login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343032
Row sums of triangle A073165.
1
1, 2, 4, 9, 24, 78, 313, 1557, 9606, 73482, 696736, 8187149, 119214337, 2150935400, 48085463503, 1331903411529, 45708405952786, 1943464419169294, 102378212255343442, 6681679619583450775, 540264005909352759970, 54120992439329583459008, 6716802027097934788929023
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} Product_{1<=i<=j<=k} (n-k+i+j-1)/(i+j-1).
Limit_{n->infinity} a(n)^(1/n^2) = 2^r * r^(r/2) * (1-r)^((1-r)/2) = 1.113022855718664043805172905388731078607920794227951582456470883692074109..., where r = 0.62986938372832785012478891433662812255632994055776040984266... is the root of the equation 2^(4*r) * (1-r)^(1-r) * r^(2*r) = (1+r)^(1+r). - Vaclav Kotesovec, Apr 03 2021
MATHEMATICA
Table[Sum[Product[(n - k + i + j - 1)/(i + j - 1), {i, 1, k}, {j, 1, i}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 03 2021 *)
Table[Sum[BarnesG[k+1] / BarnesG[n+1] * Sqrt[Gamma[k+1] * Gamma[(n-k+2)/2] * BarnesG[n-k+1] * BarnesG[n+k+2] / (Gamma[n-k+1] * Gamma[(n+k+2)/2] * BarnesG[2*k+2])], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 03 2021 *)
PROG
(PARI) a(n) = sum(k=0, n, prod(i=1, k, prod(j=1, i, (n-k+i+j-1)/(i+j-1))));
CROSSREFS
Sequence in context: A131351 A091352 A135934 * A210342 A137154 A098448
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 03 2021
STATUS
approved