OFFSET
0,5
COMMENTS
Square array T(n+k,k) read by antidiagonals: number of stars of length k with n branches.
Row n of T(n+k,k) has g.f. _(floor(n/2)+1)F_(floor(n/2))(1,3/2,5/2,...,(2*floor(n/2)+1)/2;n,n-1,...,n-floor(n/2)+1;2^n*x) (conjecture). [Paul Barry, Jan 23 2009]
LINKS
Seiichi Manyama, Rows n = 0..139, flattened
D. G. Cantor, On the analogue of the division polynomials for hyperelliptic curves, J. Reine Angew. Math. (Crelle's J.) 447 (1994), pp. 91-145.
C. Krattenthaler, A. J. Guttmann and X. G. Viennot, Vicious walkers, friendly walkers and Young tableaux, II: with a wall, arXiv:cond-mat/0006367 [cond-mat.stat-mech], 2000.
FORMULA
T(n, k) * T(n-2, k-1) - 2 * T(n-1, k-1) * T(n-1, k) + T(n, k-1) * T(n-2, k) = 0.
T(n+k, k) = Product_{1<=i<=j<=k} (n+i+j-1)/(i+j-1). - Ralf Stephan, Mar 02 2005
EXAMPLE
Triangle rows:
1;
1, 1;
1, 2, 1;
1, 3, 4, 1;
1, 4, 10, 8, 1;
1, 5, 20, 35, 16, 1;
1, 6, 35, 112, 126, 32, 1;
1, 7, 56, 294, 672, 462, 64, 1;
1, 8, 84, 672, 2772, 4224, 1716, 128, 1;
MATHEMATICA
t[n_, k_] := Product[ (n-k+i+j-1) / (i+j-1), {j, 1, k}, {i, 1, j}]; Flatten[ Table[t[n, k], {n, 0, 10}, {k, 0, n}]] (* Jean-François Alcover, May 23 2012, after PARI *)
PROG
(PARI) {T(n, k) = if( k<0 || k>n, 0, prod( i=1, (k+1)\2, binomial(n + 2*i - 1 - k%2, 4*i - 1 - k%2*2)) / prod( i=0, (k-1)\2, binomial(2*k - 2*i - 1, 2*i)))}
(PARI) {T(n, k) = if( k<0 || n<0, 0, prod( j=1, k, prod( i=1, j, (n - k + i + j - 1) / (i + j - 1) )))} /* Michael Somos, Oct 16 2006 */
CROSSREFS
KEYWORD
AUTHOR
Michael Somos, Jul 24 2002
EXTENSIONS
Edited by Ralf Stephan, Mar 02 2005
STATUS
approved