The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A063841 Table T(n,k) giving number of k-multigraphs on n nodes (n >= 1, k >= 0) read by antidiagonals. 12
 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 10, 11, 1, 1, 5, 20, 66, 34, 1, 1, 6, 35, 276, 792, 156, 1, 1, 7, 56, 900, 10688, 25506, 1044, 1, 1, 8, 84, 2451, 90005, 1601952, 2302938, 12346, 1, 1, 9, 120, 5831, 533358, 43571400, 892341888, 591901884, 274668, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS The first five rows admit the g.f. 1/(1-x), 1/(1-x)^2, 1/(1-x)^4 and those given in A063842, A063843. Is it known that the n-th row admits a rational g.f. with denominator (1-x)^A000124(n)? - M. F. Hasler, Jan 19 2012 T(n+1,k-1) is the number of unoriented ways to color the edges of a regular n-dimensional simplex using up to k colors. - Robert A. Russell, Aug 21 2019 LINKS Andrew Howroyd, Table of n, a(n) for n = 1..820 Harald Fripertinger, The cycle type of the induced action on 2-subsets Vladeta Jovovic, Formulae for the number T(n,k) of n-multigraphs on k nodes FORMULA T(n,k) = A327084(n-1,k+1) for n > 1. - Robert A. Russell, Aug 21 2019 EXAMPLE Table begins =========================================================== n\k| 0    1       2         3           4             5 ---|------------------------------------------------------- 1  | 1    1       1         1           1             1 ... 2  | 1    2       3         4           5             6 ... 3  | 1    4      10        20          35            56 ... 4  | 1   11      66       276         900          2451 ... 5  | 1   34     792     10688       90005        533358 ... 6  | 1  156   25506   1601952    43571400     661452084 ... 7  | 1 1044 2302938 892341888 95277592625 4364646955812 ... ... T(3,2)=10 because there are 10 unlabeled graphs with 3 nodes with at most 2 edges connecting any pair. (. . .),(.-. .),(.-.-.),(.-.-.-),(.=. .),(.=.=.),(.=.=.=),(.-.=.),(.-.-.=),(.=.=.-). - Geoffrey Critzer, Jan 23 2012 MATHEMATICA (* This code gives the array T(n, k). *) Needs["Combinatorica`"]; Transpose[Table[Table[PairGroupIndex[SymmetricGroup[n], s]/.Table[s[i]->k+1, {i, 0, Binomial[n, 2]}], {n, 1, 7}], {k, 0, 6}]]//Grid (* Geoffrey Critzer, Jan 23 2012 *) permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m]; edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]]; T[n_, k_] := (s=0; Do[s += permcount[p]*(k+1)^edges[p], {p, IntegerPartitions[n]}]; s/n!); Table[T[n-k, k], {n, 1, 10}, {k, n-1, 0, -1}] // Flatten (* Jean-François Alcover, Jul 08 2018, after Andrew Howroyd *) PROG (PARI) permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)} T(n, k) = {my(s=0); forpart(p=n, s+=permcount(p)*(k+1)^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017 CROSSREFS Columns give A000088, A004102, A053400, A053420, A053421. Rows (4th and 5th) are listed in A063842, A063843. Cf. A327084 (unoriented simplex edge colorings). Sequence in context: A122175 A073165 A137153 * A256161 A137596 A111669 Adjacent sequences:  A063838 A063839 A063840 * A063842 A063843 A063844 KEYWORD nonn,nice,tabl AUTHOR N. J. A. Sloane, Aug 25 2001 EXTENSIONS More terms from Vladeta Jovovic, Sep 03 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 11:58 EST 2020. Contains 338900 sequences. (Running on oeis4.)