login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137153
Triangle, read by rows, where T(n,k) = C(2^k + n-k-1, n-k).
6
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 10, 8, 1, 1, 5, 20, 36, 16, 1, 1, 6, 35, 120, 136, 32, 1, 1, 7, 56, 330, 816, 528, 64, 1, 1, 8, 84, 792, 3876, 5984, 2080, 128, 1, 1, 9, 120, 1716, 15504, 52360, 45760, 8256, 256, 1, 1, 10, 165, 3432, 54264, 376992, 766480, 357760, 32896
OFFSET
0,5
COMMENTS
Matrix inverse is A137156.
EXAMPLE
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 4, 1;
1, 4, 10, 8, 1;
1, 5, 20, 36, 16, 1;
1, 6, 35, 120, 136, 32, 1;
1, 7, 56, 330, 816, 528, 64, 1;
1, 8, 84, 792, 3876, 5984, 2080, 128, 1;
1, 9, 120, 1716, 15504, 52360, 45760, 8256, 256, 1;
1, 10, 165, 3432, 54264, 376992, 766480, 357760, 32896, 512, 1;
...
MATHEMATICA
Table[Binomial[2^k+n-k-1, n-k], {n, 0, 10}, {k, 0, n}]//Flatten (* Harvey P. Dale, Mar 06 2017 *)
PROG
(PARI) {T(n, k)=binomial(2^k+n-k-1, n-k)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) {T(n, k) = polcoeff(1/(1-x+x*O(x^n))^(2^k), n-k)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A137154 (row sums), A137155 (antidiagonal sums), A060690 (central terms); A137156 (matrix inverse).
Cf. A092056 (same with reflected rows).
Sequence in context: A162717 A122175 A073165 * A340814 A063841 A256161
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jan 24 2008
STATUS
approved