login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137154
a(n) = Sum_{k=0..n} binomial(2^k + n-k-1, n-k); equals the row sums of triangle A137153.
2
1, 2, 4, 9, 24, 79, 331, 1803, 12954, 123983, 1592513, 27604172, 648528166, 20722205191, 903019659239, 53792176322629, 4388683843024734, 491232972054490915, 75545748143323475653, 15984344095578889888206
OFFSET
0,2
COMMENTS
Matrix inverse of A137153 is A137156.
FORMULA
G.f.: Sum_{n>=0} x^n/(1-x)^(2^n). - Paul D. Hanna, Sep 15 2009
G.f.: Sum_{n>=0} ( (-log(1 - x))^n / n! ) / (1 - 2^n*x). - Paul D. Hanna, Jan 23 2021
MATHEMATICA
Table[Sum[Binomial[2^(n-k) + k - 1, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jan 23 2021 *)
PROG
(PARI) a(n)=sum(k=0, n, binomial(2^k+n-k-1, n-k))
(PARI) {a(n)=local(A=sum(k=0, n, x^k/(1-x+x*O(x^n))^(2^k))); polcoeff(A, n)} \\ Paul D. Hanna, Sep 15 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 24 2008
STATUS
approved