login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} binomial(2^k + n-k-1, n-k); equals the row sums of triangle A137153.
2

%I #15 Jan 23 2021 23:38:44

%S 1,2,4,9,24,79,331,1803,12954,123983,1592513,27604172,648528166,

%T 20722205191,903019659239,53792176322629,4388683843024734,

%U 491232972054490915,75545748143323475653,15984344095578889888206

%N a(n) = Sum_{k=0..n} binomial(2^k + n-k-1, n-k); equals the row sums of triangle A137153.

%C Matrix inverse of A137153 is A137156.

%F G.f.: Sum_{n>=0} x^n/(1-x)^(2^n). - _Paul D. Hanna_, Sep 15 2009

%F G.f.: Sum_{n>=0} ( (-log(1 - x))^n / n! ) / (1 - 2^n*x). - _Paul D. Hanna_, Jan 23 2021

%t Table[Sum[Binomial[2^(n-k) + k - 1, k], {k, 0, n}], {n, 0, 20}] (* _Vaclav Kotesovec_, Jan 23 2021 *)

%o (PARI) a(n)=sum(k=0,n,binomial(2^k+n-k-1,n-k))

%o (PARI) {a(n)=local(A=sum(k=0,n,x^k/(1-x+x*O(x^n))^(2^k)));polcoeff(A,n)} \\ _Paul D. Hanna_, Sep 15 2009

%Y Cf. A137153, A137155, A137156.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Jan 24 2008