The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A256161 Triangle of allowable Stirling numbers of the second kind a(n,k). 2
 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 11, 6, 1, 1, 5, 26, 23, 9, 1, 1, 6, 57, 72, 50, 12, 1, 1, 7, 120, 201, 222, 86, 16, 1, 1, 8, 247, 522, 867, 480, 150, 20, 1, 1, 9, 502, 1291, 3123, 2307, 1080, 230, 25, 1, 1, 10, 1013, 3084, 10660, 10044, 6627, 2000, 355, 30, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Row sums = A007476 starting (1, 2, 4, 9, 23, 65, 199, 654, 2296, 8569, ...). a(n,k) counts restricted growth words of length n in the letters {1, ..., k} where every even entry appears exactly once. LINKS Table of n, a(n) for n=1..66. Yue Cai and Margaret Readdy, Negative q-Stirling numbers, arXiv:1506.03249 [math.CO], 2015. FORMULA a(n,k) = a(n-1,k-1) + ceiling(k/2)*a(n-1,k) for n >= 1 and 1 <= k <= n with boundary conditions a(n,0) = KroneckerDelta[n,0]. a(n,2) = n-1. a(n,n-1) = floor(n/2)*ceiling(n/2). EXAMPLE a(4,1) = 1 via 1111; a(4,2) = 3 via 1211, 1121, 1112; a(4,3) = 4 via 1213, 1231, 1233, 1123; a(4,4) = 1 via 1234. Triangle starts: 1; 1, 1; 1, 2, 1; 1, 3, 4, 1; 1, 4, 11, 6, 1; ... MATHEMATICA a[_, 1] = a[n_, n_] = 1; a[n_, k_] := a[n, k] = a[n-1, k-1] + Ceiling[k/2] a[n-1, k]; Table[a[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 15 2018 *) CROSSREFS Cf. A007476 (row sums), A246118 (essentially the same triangle). Sequence in context: A137153 A340814 A063841 * A137596 A111669 A336573 Adjacent sequences: A256158 A256159 A256160 * A256162 A256163 A256164 KEYWORD nonn,tabl AUTHOR Margaret A. Readdy, Mar 16 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 29 11:59 EST 2024. Contains 370425 sequences. (Running on oeis4.)