

A249077


Primes of the form n^2 + k such that n^2  k is also prime, where n < k < n.


0



3, 5, 7, 11, 13, 19, 31, 41, 61, 67, 73, 79, 83, 89, 97, 103, 137, 139, 149, 151, 157, 181, 193, 199, 211, 223, 227, 239, 241, 271, 311, 317, 331, 337, 349, 373, 421, 433, 439, 443, 449, 461, 607, 619, 631, 643, 661, 691, 719, 739, 757, 811, 823, 829, 853, 859
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Members of a pair (a, b) of primes such that a < b and the distances from a and b to the nearest square above a (or below b) are equal.
The only prime of the form n^2 + 1 (A002496) in the sequence is 5.
Is this sequence infinite?


LINKS



FORMULA

A prime p is in the sequence if and only if 2*A053187(p)p is prime.


EXAMPLE

2^21=3, 2^2+1=5, both prime.
8^23=61, 8^2+3=67, both prime.


MAPLE

g:= proc(t, m) if isprime(m+t) and isprime(mt) then (m+t, mt) else NULL fi end proc:
`union`(seq(map(g, {$1..n1}, n^2), n=2..100));
# if using Maple 11 or earlier, uncomment the next line
# sort(convert(%, list));


PROG

(Magma) lst:=[]; for m in [1..28] do r:=m*(m+1)+1; s:=(m+1)^2; for a in [r..s1] do if IsPrime(a) then b:=2*sa; if IsPrime(b) then Append(~lst, a); Append(~lst, b); end if; end if; end for; end for; Sort(lst);
(PARI) for(n=1, 859, if(issquare(n), x=ps=n; until(issquare(x), x++); ns=x); if(isprime(n), if(nps<nsn, c=2*psn, c=2*nsn); if(isprime(c), print1(n, ", "))));


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



