OFFSET
0,4
COMMENTS
Apart from 0, k^2 appears 2k times from a(k^2-k+1) through to a(k^2+k) inclusive.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
FORMULA
a(n) = ceiling((-1 + sqrt(4*n+1))/2)^2. - Robert Israel, Aug 01 2014
G.f.: (1/(1-x))*Sum_{n>=0} (2*n+1)*x^(n^2+n+1). - Robert Israel, Aug 01 2014. This is related to the Jacobi theta-function theta'_1(q), see A002483 and A245552.
G.f.: x / (1-x) * Sum_{k>0} (2*k - 1) * x^(k^2 - k). - Michael Somos, Jan 05 2015
a(n) = floor(sqrt(n)+1/2)^2. - Mikael Aaltonen, Jan 17 2015
Sum_{n>=1} 1/a(n)^2 = 2*zeta(3). - Amiram Eldar, Aug 15 2022
EXAMPLE
a(7) = 9 since 7 is closer to 9 than to 4.
G.f. = x + x^2 + 4*x^3 + 4*x^4 + 4*x^5 + 4*x^6 + 9*x^7 + 9*x^8 + 9*x^9 + ...
MAPLE
seq(ceil((-1+sqrt(4*n+1))/2)^2, n=0..20); # Robert Israel, Jan 05 2015
MATHEMATICA
nearestSq[n_] := Block[{a = Floor@ Sqrt@ n}, If[a^2 + a + 1/2 > n, a^2, a^2 + 2 a + 1]]; Array[ nearestSq, 75, 0] (* Robert G. Wilson v, Aug 01 2014 *)
PROG
(Haskell)
a053187 n = a053187_list !! n
a053187_list = 0 : concatMap (\x -> replicate (2*x) (x ^ 2)) [1..]
-- Reinhard Zumkeller, Nov 28 2011
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Mar 01 2000
EXTENSIONS
Title improved by Jon E. Schoenfield, Jun 09 2019
STATUS
approved