login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190718
Quadruplicated tetrahedral numbers A000292.
8
1, 1, 1, 1, 4, 4, 4, 4, 10, 10, 10, 10, 20, 20, 20, 20, 35, 35, 35, 35, 56, 56, 56, 56, 84, 84, 84, 84, 120, 120, 120, 120, 165, 165, 165, 165, 220, 220, 220, 220, 286, 286, 286, 286, 364, 364, 364, 364, 455, 455, 455, 455
OFFSET
0,5
COMMENTS
The Gi1 triangle sums, for the definitions of these and other triangle sums see A180662, of the triangle A159797 are linear sums of shifted versions of the quadruplicated tetrahedral numbers A000292, i.e., Gi1(n) = a(n-1) + a(n-2) + a(n-3) + 2*a(n-4) + a(n-8).
The Gi1 and Gi2 triangle sums of the Connell sequence A001614 as a triangle are also linear sums of shifted versions of the sequence given above.
FORMULA
a(n) = binomial(floor(n/4)+3,3).
a(n-3) + a(n-2) + a(n-1) + a(n) = A144678(n).
a(n) = +a(n-1) +3*a(n-4) -3*a(n-5) -3*a(n-8) +3*a(n-9) +a(n-12) -a(n-13).
G.f.: 1 / ( (1+x)^3*(1+x^2)^3*(x-1)^4 ).
Sum_{n>=0} 1/a(n) = 6. - Amiram Eldar, Aug 18 2022
MAPLE
A190718:= proc(n) binomial(floor(n/4)+3, 3) end:
seq(A190718(n), n=0..52);
MATHEMATICA
LinearRecurrence[{1, 0, 0, 3, -3, 0, 0, -3, 3, 0, 0, 1, -1}, {1, 1, 1, 1, 4, 4, 4, 4, 10, 10, 10, 10, 20}, 60] (* Harvey P. Dale, Oct 20 2012 *)
CROSSREFS
Cf. A000292 (tetrahedral numbers), A058187 (duplicated), A190717 (triplicated).
Sequence in context: A053187 A013189 A295643 * A035621 A046109 A377748
KEYWORD
nonn,easy
AUTHOR
Johannes W. Meijer, May 18 2011
STATUS
approved