|
|
A190718
|
|
Quadruplicated tetrahedral numbers A000292
|
|
8
|
|
|
1, 1, 1, 1, 4, 4, 4, 4, 10, 10, 10, 10, 20, 20, 20, 20, 35, 35, 35, 35, 56, 56, 56, 56, 84, 84, 84, 84, 120, 120, 120, 120, 165, 165, 165, 165, 220, 220, 220, 220, 286, 286, 286, 286, 364, 364, 364, 364, 455, 455, 455, 455
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
The Gi1 triangle sums, for the definitions of these and other triangle sums see A180662, of the triangle A159797 are linear sums of shifted versions of the quadruplicated tetrahedral numbers A000292, i.e. Gi1(n) = a(n-1) + a(n-2) + a(n-3) + 2*a(n-4) + a(n-8).
The Gi1 and Gi2 triangle sums of the Connell sequence A001614 as a triangle are also linear sums of shifted versions of the sequence given above.
|
|
LINKS
|
Table of n, a(n) for n=0..51.
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 3, -3, 0, 0, -3, 3, 0, 0, 1, -1).
|
|
FORMULA
|
a(n) = binomial(floor(n/4)+3,3)
a(n-3) + a(n-2) + a(n-1) + a(n) = A144678(n).
a(n)= +a(n-1) +3*a(n-4) -3*a(n-5) -3*a(n-8) +3*a(n-9) +a(n-12) -a(n-13).
G.f.: 1 / ( (1+x)^3*(1+x^2)^3*(x-1)^4 )
|
|
MAPLE
|
A190718:= proc(n) binomial(floor(n/4)+3, 3) end:
seq(A190718(n), n=0..52);
|
|
MATHEMATICA
|
LinearRecurrence[{1, 0, 0, 3, -3, 0, 0, -3, 3, 0, 0, 1, -1}, {1, 1, 1, 1, 4, 4, 4, 4, 10, 10, 10, 10, 20}, 60] (* Harvey P. Dale, Oct 20 2012 *)
|
|
CROSSREFS
|
Cf. A000292 (tetrahedral numbers), A058187 (duplicated), A190717 (triplicated).
Sequence in context: A053187 A013189 A295643 * A035621 A046109 A294246
Adjacent sequences: A190715 A190716 A190717 * A190719 A190720 A190721
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Johannes W. Meijer, May 18 2011
|
|
STATUS
|
approved
|
|
|
|