login
A190719
Numbers that are congruent to {0, 1, 3, 5, 7, 8, 11} mod 12.
1
0, 1, 3, 5, 7, 8, 11, 12, 13, 15, 17, 19, 20, 23, 24, 25, 27, 29, 31, 32, 35, 36, 37, 39, 41, 43, 44, 47, 48, 49, 51, 53, 55, 56, 59, 60, 61, 63, 65, 67, 68, 71, 72, 73, 75, 77, 79, 80, 83, 84, 85, 87, 89, 91, 92, 95, 96, 97, 99, 101, 103, 104, 107, 108, 109, 111
OFFSET
1,3
COMMENTS
The key-numbers of the pitches of a minor neapolitan scale on a standard chromatic keyboard, with root = 0.
This sequence contains all odd primes. - Jonathan Vos Post, Jun 09 2011
FORMULA
a(n) = a(n-1) + a(n-7) - a(n-8) for n>8.
G.f.: x^2*(1+2*x+2*x^2+2*x^3+x^4+3*x^5+x^6) / ( (x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Jun 11 2011
a(n) = floor(12*n/7) - floor((n mod 7)/6) - floor(((n+3) mod 7)/5). - Rolf Pleisch, Jun 12 2011
From Wesley Ivan Hurt, Jul 21 2016: (Start)
a(n) = a(n-7) + 12 for n>7.
a(n) = (84*n - 91 - 9*(n mod 7) + 5*((n+1) mod 7) - 2*((n+2) mod 7) - 2*((n+3) mod 7) - 2*((n+4) mod 7) + 5*((n+5) mod 7) + 5*((n+6) mod 7))/49.
a(7k) = 12k-1, a(7k-1) = 12k-4, a(7k-2) = 12k-5, a(7k-3) = 12k-7, a(7k-4) = 12k-9, a(7k-5) = 12k-11, a(7k-6) = 12k-12. (End)
MAPLE
A190719:=n->12*floor(n/7)+[0, 1, 3, 5, 7, 8, 11][(n mod 7)+1]: seq(A190719(n), n=0..100); # Wesley Ivan Hurt, Jul 21 2016
MATHEMATICA
Select[Range[0, 120], MemberQ[{0, 1, 3, 5, 7, 8, 11}, Mod[#, 12]]&] (* Harvey P. Dale, Jun 10 2011 *)
PROG
(Magma) [n : n in [0..150] | n mod 12 in [0, 1, 3, 5, 7, 8, 11]]; // Wesley Ivan Hurt, Jul 21 2016
CROSSREFS
Cf. A190785.
Sequence in context: A239419 A195439 A338446 * A187224 A106252 A184415
KEYWORD
nonn,easy
AUTHOR
Roberto Bertocco, May 29 2011
STATUS
approved