This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2017 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A187224 Rank transform of the sequence floor(3*n/2). 108
 1, 3, 5, 7, 8, 11, 12, 14, 16, 18, 19, 21, 23, 25, 27, 29, 30, 32, 34, 36, 38, 40, 41, 43, 45, 47, 48, 51, 52, 54, 56, 58, 60, 61, 63, 65, 67, 69, 70, 72, 74, 76, 78, 80, 81, 83, 85, 87, 89, 91, 92, 94, 96, 98, 100, 102, 103, 105, 107, 109, 110, 113, 114, 116, 118, 120, 121, 123, 125, 127, 129, 131, 132, 135, 136, 138, 140, 142, 143, 145, 147, 149, 151, 153, 154, 156, 158, 160, 162, 163, 165, 167, 169, 171, 172, 175, 176, 178, 180, 182, 183, 185, 187, 189, 191, 193, 194, 196, 198, 200 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Complement of A187225. The notion of the rank transform of a sequence is introduced as follows.  Suppose that a=(a(n)), for n>=1, is a nondecreasing sequence of nonnegative integers, where a(1)<=1, and suppose that b=(b(n)), for n>=1, is an increasing sequence of positive integers. Define h(1)=a(1), and for n>1, define h(n)=the number of numbers b(i) satisfying a(n-1)<=b(i)1, define r(n)=b(n-1)+h(n)+1. The sequence r is the adjusted rank sequence when a and b are jointly ranked, with a(i) before b(j) when a(i)=b(j).  (For a discussion of adjusted joint rank sequences, see A186219 and A186350.) If r(n)=b(n) for all n>=1, we call r the rank transform of a and denote it by R(a).  To summarize,   (1)  initial values: r(1)=1, h(1)=a(1);   (2)  counting function: h(n)= # r(i) in the half-open        interval [a(n-1),a(n));   (3)  recurrence:  r(n)=r(n-1)+h(n)+1. Assuming a unbounded, let c be the number of a(i)<=1, let c(1)=c+1, and for n>1, let c(n) be the rank of r(n) when all the numbers a(i)<=r(n) and r(1),...,r(n-1), r(n) are jointly ranked.  Then, clearly, a(n)<=r(n)<=c(n) for n>=1, and the sequences r and c are a complementary pair. What conditions on the sequence a will ensure that R(a) exists?  That is, what conditions will ensure that the counting function in (2) can be determined inductively, so that the recurrence (3) can be used to self-generate the sequence r?  The answer is this:  a(n)<=c(n-1)+1; viz., if a(n)>c(n-1)+1, then c(n-1)+1=r(n), but then a(n)>r(n), a contradiction, but if a(n)<=c(n-1)+1, there is no such obstacle. Examples: R(A000012)=A000027 R(A000027)=A000201, the lower Wythoff sequence R(A004526)=A026367 R(A005408)=A005408 Returning now to a and b as above, let (r(1,k)) be the adjusted joint rank sequence (AJRS) of a and b, with a(i) before b(j) when a(i)=b(j).  Let (r(2,k)) be the AJRS of a and (r(1,k)); and inductively, let (r(n,k)) be the AJRS of a and (r(n-1,k)).  If R(a) exists, then the limit of (r(n,k)) is R(a). Thus, any choice of initial sequence b can be used to determine the first thousand terms of R(a).  In the Mathematica program below, b=(1,2,3,4,...)=A000027. LINKS EXAMPLE a... 1..3..4..6..7...9...10..12..13..15..16..18..19.. r... 1..3..5..7..8...11..12..14..16..18..19..21..23.. c... 2..4..6..9..10..13..15..17..20..22..24..26..28.. h... 1..1..1..1..0...2...0...1...1...1...0...1...1... The sequences which converge to R(a), starting with a=A187224 and b=A000027: a(k)....1..3..4..6..7...9...10..12..13..15... b(k)....1..2..3..4..5...6...7...8...9...10... r(1,k)..1..4..6..9..11..14..16..19..21..24... r(2,k)..1..3..4..6..8...9...11..13..14..16... r(3,k)..1..3..5..7..9...11..13..15..16..19... r(4,k)..1..3..5..7..8...10..12..14..15..17... r(5,k)..1..3..5..7..8...11..12..14..16..18... MATHEMATICA seqA=Table[Floor[3*n/2], {n, 1, 220}]     (* A032766 *) seqB=Table[n, {n, 1, 120}];               (* A000027 *) jointRank[{seqA_, seqB_}]:={Flatten@Position[#1, {_, 1}], Flatten@Position[#1, {_, 2}]}&[Sort@Flatten[{{#1, 1}&/@seqA, {#1, 2}&/@seqB}, 1]]; limseqU=FixedPoint[jointRank[{seqA, #1[[1]]}]&, jointRank[{seqA, seqB}]][[1]]                     (* A187224 *) Complement[Range[Length[seqA]], limseqU] (* A187225 *) (* by Peter J. C. Moses, Mar 07 2011 *) CROSSREFS Cf. A186219, A186350, A187225. Sequence in context: A239419 A195439 A190719 * A106252 A184415 A050111 Adjacent sequences:  A187221 A187222 A187223 * A187225 A187226 A187227 KEYWORD nonn AUTHOR Clark Kimberling, Mar 07 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 16:41 EST 2018. Contains 318023 sequences. (Running on oeis4.)