This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A186350 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f and g are the odd numbers and the triangular numbers.  Complement of A186351. 20
 1, 3, 5, 7, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 139, 140, 141 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Suppose that f and g are strictly increasing functions for which (f(i)) and (g(j)) are integer sequences.  If 0<|d|<1, the sets F={f(i): i>=1} and G={g(j)+d: j>=1} are clearly disjoint.  Let f^=(inverse of f) and g^=(inverse of g).  When the numbers in F and G are jointly ranked, the rank of f(n) is a(n):=n+floor(g^(f(n))-d), and the rank of g(n)+d is b(n):=n+floor(f^(g(n))+d).  Therefore, the sequences a and b are a complementary pair. Although the sequences (f(i)) and (g(j)) may not be disjoint, the sequences (f(i)) and (g(j)+d) are disjoint, and this observation enables two types of adjusted joint rankings: (1) if 0

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 05:15 EST 2018. Contains 318052 sequences. (Running on oeis4.)