OFFSET
1,1
FORMULA
a(n) = n+floor(sqrt(8n)).
EXAMPLE
First, write
....8....16..24..32..40..48..56..64..72..80.. (8i)
1..4..9..16...25...36......49....64.......81 (squares)
Then replace each number by its rank, where ties are settled by ranking 8i after the square:
p=(3,6,7,9,11,12,14,16,17,..)=A186348=a(n).
q=(1,2,4,5,8,10,13,15,19,...)=A186349=n+floor((n^2-1)/8).
MATHEMATICA
(* adjusted joint rank sequences p and q, using general formula for ranking 1st degree u*n+v and 2nd degree x*n^2+y*n+z *)
d=-1/2; u=8; v=0; x=1; y=0;
h[n_]:=(-y+(4x(u*n+v-d)+y^2)^(1/2))/(2x);
a[n_]:=n+Floor[h[n]];
Table[a[n], {n, 1, 120}] (* A186348 *)
PROG
(PARI) a(n)=n+sqrtint(8*n) \\ Charles R Greathouse IV, Jul 05 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 20 2011
STATUS
approved