login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190722 Primes p such that A008472(p-1) = A008472(p+1) and is a prime. 2
3, 45751, 149351, 171529, 223099, 434237, 678077, 706841, 1996297, 3993037, 6340457, 7199113, 7419761, 9000317, 13129271, 15052777, 17193217, 18436879, 18749881, 18998519, 23353469, 23689423, 33746663, 40985411, 41437751, 43547797, 51198097, 53773651, 56825687, 60207809, 62190113, 79778899, 81708353, 83019421 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

A008472 is the sum of the distinct primes dividing n.

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..223 (calculated from the b-file at A203182)

EXAMPLE

For p = 45751, p-1 = 2*3*5^3*61; 2+3+5+61=71 and p+1 = 2^3*7*19*43; 2+7+19+43 = 71.

MATHEMATICA

fQ[n_] := Block[{pn = Plus @@ (First@# & /@ FactorInteger[n - 1]), pp = Plus@@ (First@# & /@ FactorInteger[n + 1])}, pn == pp && PrimeQ[pn]];

p = 2; lst = {}; While[p < 10^8, If[fQ@p, AppendTo[lst, p]; Print@p]; p =

NextPrime@p]; lst

pQ[n_]:=Module[{p1=Total[FactorInteger[n-1][[All, 1]]], p2=Total[ FactorInteger[ n+1][[All, 1]]]}, p1==p2&&PrimeQ[p1]]; Select[ Prime[ Range[5*10^6]], pQ] (* Harvey P. Dale, Jun 18 2017 *)

PROG

(MAGMA) [p:p in PrimesInInterval(3, 10^8)|(&+PrimeDivisors(p-1) eq &+PrimeDivisors(p+1)) and IsPrime(&+PrimeDivisors(p-1))]; // Marius A. Burtea, Nov 14 2019

CROSSREFS

Cf. A190680, A008472, A086711.

Subsequence of A203182.

Sequence in context: A135760 A003541 A086829 * A171365 A115976 A340182

Adjacent sequences:  A190719 A190720 A190721 * A190723 A190724 A190725

KEYWORD

nonn

AUTHOR

Robert G. Wilson v, May 17 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 05:05 EST 2021. Contains 349445 sequences. (Running on oeis4.)