OFFSET
1,2
COMMENTS
The sequence (a(n+1)-1) = 1,3,7,8,10,... is the union of two generalized Beatty sequences, namely (floor(n*phi)+2*n) = A003231, and the sequence (4*floor(n*phi)+3*n+1), the latter with offset 0. For a proof see my paper "Points of increase...". - Michel Dekking, Apr 01 2020
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10000
Michel Dekking, Points of increase of the sum of digits function of the base phi expansion, arXiv:2003.14125 [math.CO], 2020.
FORMULA
a(n) = 1 + Sum_{k=1..n-1} x(k), where x is the unique fixed point of the morphism 1->12, 2->4, 4->1244 on the alphabet {1,2,4}. - Michel Dekking, Apr 01 2020
MATHEMATICA
Block[{nn = 160, k}, k = 2 Ceiling[Log[GoldenRatio, nn]]; Position[Differences@ Array[Total@ First@ RealDigits[#, GoldenRatio, k] &, nn, 0], _?(# > 0 &)][[All, 1]]] (* Michael De Vlieger, Apr 02 2020, after T. D. Noe at A055778 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Carmine Suriano, May 17 2011
STATUS
approved