login
A190680
Primes p such that sopfr(p-1) = sopfr(p+1) is also prime, where sopfr is A001414.
4
11, 251, 1429, 906949, 1050449, 1058389, 3728113, 9665329, 13623667, 14320489, 30668003, 30910391, 45717377, 49437001, 55544959, 57510911, 58206653, 58772257, 69490901, 72191321, 73625789, 75235973, 79396433, 99673891, 103821169, 104662139, 121322449, 125938889, 147210257, 164810311, 169844879, 170650169, 201991721
OFFSET
1,1
COMMENTS
The first three terms were computed by J. M. Bergot (personal communication from J. M. Bergot to N. J. A. Sloane, May 16 2011).
The number of terms < 10^n: 0, 1, 2, 3, 3, 4, 8, 24, 70, 253, 839, ..., . - Robert G. Wilson v, May 31 2011
LINKS
Charles R Greathouse IV and Robert G. Wilson v, Table of n, a(n) for n = 1.. 2592 (Charles R Greathouse IV to 1536, Robert G. Wilson v to 2592)
EXAMPLE
sopfr(250) = sopfr(2*5^3) = 2 + 5*3 = 17 = 2*2 + 3*2 + 7 = sopfr(2^2*3^2*7) = sopfr(252), and 17 and 251 are prime, so 251 is in this sequence.
MATHEMATICA
f[n_] := Plus @@ Flatten[ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@ n]; fQ[n_] := Block[{pn = f[n - 1], pp = f[n + 1]}, pn == pp && PrimeQ@ pn]; p = 2; lst = {}; While[p < 216000000, If[ fQ@ p, AppendTo[lst, p]]; p = NextPrime@ p]; lst (* Robert G. Wilson v, May 18 2011 *)
CROSSREFS
Subsequence of A086711. Cf. A190722.
Sequence in context: A098672 A056210 A182350 * A377327 A089298 A274129
KEYWORD
nonn
AUTHOR
STATUS
approved