The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190683 [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(sqrt(3),3,1) and [ ]=floor. 5
2, 2, 1, 3, 2, 1, 1, 3, 2, 1, 0, 3, 2, 1, 3, 2, 2, 1, 3, 2, 1, 1, 3, 2, 1, 0, 3, 2, 1, 3, 2, 2, 1, 3, 2, 1, 0, 3, 2, 1, 0, 2, 2, 1, 3, 2, 1, 1, 3, 2, 1, 0, 3, 2, 1, 3, 2, 2, 1, 3, 2, 1, 1, 3, 2, 1, 0, 3, 2, 1, 3, 2, 2, 1, 3, 2, 1, 1, 3, 2, 1, 0, 3, 2, 1, 3, 2, 1, 1, 3, 2, 1, 0, 3, 2, 1, 0, 2, 2, 1, 3, 2, 1, 1, 3, 2, 1, 0, 3, 2, 1, 3, 2, 2, 1, 3, 2, 1, 1, 3, 2, 1, 0, 3, 2, 1, 3, 2, 2, 1, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Write a(n)=[(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers.
Examples:
(golden ratio,2,1): A190427-A190430
(sqrt(2),2,0): A190480-A190482
(sqrt(2),2,1): A190483-A190486
(sqrt(2),3,0): A190487-A190490
(sqrt(2),3,1): A190491-A190495
(sqrt(2),3,2): A190496-A190500
(sqrt(2),4,c): A190544-A190566
LINKS
MATHEMATICA
r = Sqrt[3]; b = 3; c = 1;
f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r];
t = Table[f[n], {n, 1, 200}] (* A190683 *)
Flatten[Position[t, 0]] (* A190684 *)
Flatten[Position[t, 1]] (* A190685 *)
Flatten[Position[t, 2]] (* A190686 *)
Flatten[Position[t, 3]] (* A190687 *)
CROSSREFS
Sequence in context: A053274 A243926 A281013 * A181810 A339304 A237578
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 17 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 09:41 EDT 2024. Contains 372733 sequences. (Running on oeis4.)