The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190683 [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(sqrt(3),3,1) and [ ]=floor. 5
 2, 2, 1, 3, 2, 1, 1, 3, 2, 1, 0, 3, 2, 1, 3, 2, 2, 1, 3, 2, 1, 1, 3, 2, 1, 0, 3, 2, 1, 3, 2, 2, 1, 3, 2, 1, 0, 3, 2, 1, 0, 2, 2, 1, 3, 2, 1, 1, 3, 2, 1, 0, 3, 2, 1, 3, 2, 2, 1, 3, 2, 1, 1, 3, 2, 1, 0, 3, 2, 1, 3, 2, 2, 1, 3, 2, 1, 1, 3, 2, 1, 0, 3, 2, 1, 3, 2, 1, 1, 3, 2, 1, 0, 3, 2, 1, 0, 2, 2, 1, 3, 2, 1, 1, 3, 2, 1, 0, 3, 2, 1, 3, 2, 2, 1, 3, 2, 1, 1, 3, 2, 1, 0, 3, 2, 1, 3, 2, 2, 1, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Write a(n)=[(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers. Examples: (golden ratio,2,1): A190427-A190430 (sqrt(2),2,0): A190480-A190482 (sqrt(2),2,1): A190483-A190486 (sqrt(2),3,0): A190487-A190490 (sqrt(2),3,1): A190491-A190495 (sqrt(2),3,2): A190496-A190500 (sqrt(2),4,c): A190544-A190566 LINKS Table of n, a(n) for n=1..131. MATHEMATICA r = Sqrt[3]; b = 3; c = 1; f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r]; t = Table[f[n], {n, 1, 200}] (* A190683 *) Flatten[Position[t, 0]] (* A190684 *) Flatten[Position[t, 1]] (* A190685 *) Flatten[Position[t, 2]] (* A190686 *) Flatten[Position[t, 3]] (* A190687 *) CROSSREFS Cf. A190684-A190687. Sequence in context: A053274 A243926 A281013 * A181810 A339304 A237578 Adjacent sequences: A190680 A190681 A190682 * A190684 A190685 A190686 KEYWORD nonn AUTHOR Clark Kimberling, May 17 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 09:41 EDT 2024. Contains 372733 sequences. (Running on oeis4.)