login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379584
Denominators of the partial sums of the reciprocals of the powerful part function (A057521).
3
1, 1, 1, 4, 4, 4, 4, 8, 72, 72, 72, 72, 72, 72, 72, 144, 144, 144, 144, 144, 144, 144, 144, 144, 3600, 3600, 10800, 10800, 10800, 10800, 10800, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 1058400
OFFSET
1,4
LINKS
Maurice-Étienne Cloutier, Les parties k-puissante et k-libre d'un nombre, Thèse de doctorat, Université Laval, Québec (2018).
Maurice-Étienne Cloutier, Jean-Marie De Koninck, and Nicolas Doyon, On the powerful and squarefree parts of an integer, Journal of Integer Sequences, Vol. 17 (2014), Article 14.6.6.
László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.12, p. 33.
FORMULA
a(n) = denominator(Sum_{k=1..n} 1/A057521(k)).
MATHEMATICA
f[p_, e_] := If[e > 1, p^e, 1]; powful[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[1/powful[n], {n, 1, 50}]]]
PROG
(PARI) powerful(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] > 1, f[i, 1]^f[i, 2], 1)); }
list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / powerful(k); print1(denominator(s), ", "))};
CROSSREFS
Cf. A057521, A370902, A370903, A379583 (numerators), A379586.
Sequence in context: A114555 A361471 A379586 * A124570 A213083 A053187
KEYWORD
nonn,easy,frac,new
AUTHOR
Amiram Eldar, Dec 26 2024
STATUS
approved