login
A379585
Numerators of the partial alternating sums of the reciprocals of the powerful part function (A057521).
3
1, 0, 1, 3, 7, 3, 7, 13, 125, 53, 125, 107, 179, 107, 179, 349, 493, 53, 69, 65, 81, 65, 81, 79, 1991, 1591, 43357, 40657, 51457, 40657, 51457, 102239, 123839, 102239, 123839, 123239, 144839, 123239, 144839, 142139, 163739, 142139, 163739, 158339, 160739, 139139
OFFSET
1,4
LINKS
László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.12, p. 33.
FORMULA
a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A057521(k)).
a(n)/A379586(n) = (5/19) * A191622 * n + O(n^(1/2) * exp(-c1 * log(n)^(3/5) / log(log(n))^(1/5))) unconditionally, and with an improved error term O(n^(2/5) * exp(c2 * log(n) / log(log(n)))) assuming the Riemann hypothesis, where c1 and c2 are positive constants.
EXAMPLE
Fractions begin with 1, 0, 1, 3/4, 7/4, 3/4, 7/4, 13/8, 125/72, 53/72, 125/72, 107/72, ...
MATHEMATICA
f[p_, e_] := If[e > 1, p^e, 1]; powful[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[(-1)^(n+1)/powful[n], {n, 1, 50}]]]
PROG
(PARI) powerful(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] > 1, f[i, 1]^f[i, 2], 1)); }
list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / powerful(k); print1(numerator(s), ", "))};
CROSSREFS
Cf. A057521, A191622, A370902, A370903, A379583, A379586 (denominators).
Sequence in context: A016665 A320831 A120124 * A151573 A113832 A115631
KEYWORD
nonn,easy,frac
AUTHOR
Amiram Eldar, Dec 26 2024
STATUS
approved