login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A320831 Decimal expansion of the constant t having the continued fraction expansion {d(n), n>=0} such that the continued fraction expansion of 3*t yields partial denominators {4*d(n), n>=0}. 4
1, 3, 7, 3, 7, 7, 4, 4, 1, 6, 4, 1, 1, 8, 9, 2, 7, 7, 9, 8, 3, 8, 5, 4, 9, 5, 0, 6, 6, 3, 9, 6, 0, 5, 3, 8, 3, 8, 0, 0, 7, 1, 3, 0, 0, 2, 6, 0, 7, 8, 4, 2, 1, 8, 9, 3, 2, 7, 9, 9, 0, 4, 0, 2, 4, 8, 2, 6, 7, 3, 3, 1, 5, 5, 2, 4, 1, 0, 4, 2, 5, 4, 5, 3, 6, 6, 8, 6, 9, 2, 3, 0, 9, 0, 7, 2, 9, 8, 0, 8, 9, 1, 3, 9, 8, 4, 8, 4, 5, 6, 5, 8, 1, 0, 0, 4, 2, 4, 4, 1, 1, 4, 1, 9, 3, 3, 0, 7, 2, 0, 4, 4, 7, 4, 5, 2, 1, 8, 6, 8, 4, 6, 4, 9, 6, 8, 7, 1, 3, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Is this constant transcendental?
Compare to the continued fraction expansions of sqrt(3) and 3*sqrt(3), which are related by a factor of 5: sqrt(3) = [1; 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...] and 3*sqrt(3) = [5; 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, ...].
Further, let CF(x) denote the simple continued fraction expansion of x, then we have the related identities which hold for n >= 1:
(C1) CF( (4*n+1) * sqrt((n+1)/n) ) = (4*n+3) * CF( sqrt((n+1)/n) ),
(C2) CF( (2*n+1) * sqrt((n+2)/n) ) = (2*n+3) * CF( sqrt((n+2)/n) ).
LINKS
FORMULA
Given t = [d(0); d(1), d(2), d(3), d(4), d(5), d(6), ..., A320834(n), ...], some related simple continued fractions are:
(1) 3*t = [4*d(0); 4*d(1), 4*d(2), 4*d(3), 4*d(4), 4*d(5), ...],
(2) 3*t/4 = [d(0); 16*d(1), d(2), 16*d(3), d(4), 16*d(5), d(6), ...],
(3) 12*t = [16*d(0); d(1), 16*d(2), d(3), 16*d(4), d(5), 16*d(6), ...],
(4) 3*t/2 = [2*d(0); 8*d(1), 2*d(2), 8*d(3), 2*d(4), 8*d(5), 2*d(6), ...],
(5) 6*t = [8*d(0); 2*d(1), 8*d(2), 2*d(3), 8*d(4), 2*d(5), 8*d(6), ...].
EXAMPLE
The decimal expansion of this constant t begins:
t = 1.373774416411892779838549506639605383800713002607842189327990402...
The simple continued fraction expansion of t begins:
t = [1; 2, 1, 2, 12, 2, 1, 2, 15, 1, 2, 2, 2, 2, 2, 2, 2, 1, 19, 2, 2, 2, 2, 2, 1, 2, 24, 2, 1, 2, 2, 2, 1, 2, 24, ..., A320834(n), ...].
such that the simple continued fraction expansion of 3*t begins:
3*t = [4; 8, 4, 8, 48, 8, 4, 8, 60, 4, 8, 8, 8, 8, 8, 8, 8, 4, 76, 8, 8, 8, 8, 8, 4, 8, 96, 8, 4, 8, 8, 8, 4, 8, 96, ..., 4*A320834(n), ...].
The initial 1000 digits in the decimal expansion of t are
t = 1.37377441641189277983854950663960538380071300260784\
21893279904024826733155241042545366869230907298089\
13984845658100424411419330720447452186846496871309\
93611537665995205176080835177406950895125756891119\
80915134888807230285924622832070894390440105854297\
09681249062135643627285425138701026540290422483564\
88492730997578199229485083989821808079068883171984\
07031141426574548209572058371283039520211641927528\
87513532330143554990150517422840360714935764293437\
57458872431528639369813728159265563110330718628799\
96977704230617847144362021013013790221614910568231\
27450894001787415768703790366780081874847582449346\
46012195526919702308642260551245557225670489756926\
10073356625047859682542328603265305024792731699661\
07707346790590697402355533935869626197258295389474\
34717509042975989479155252899700525467717059228960\
29994752938551798255237161498633969001654212726415\
44019114620209689305131806997427047626502096289167\
37623579663973917818431418184110200421986541799594\
29845246183090799528184841814574898135012164288045...
...
The initial 1000 terms in the continued fraction expansion of t are
t = [1;2,1,2,12,2,1,2,15,1,2,2,2,2,2,2,2,1,19,2,2,2,2,2,1,2,
24,2,1,2,2,2,1,2,24,1,2,1,24,1,2,2,2,1,2,24,2,1,2,2,2,
2,2,2,2,1,31,2,1,2,12,2,1,2,2,2,1,2,12,2,1,2,31,1,2,1,
24,1,2,1,31,2,2,2,2,2,1,2,24,1,2,1,2,288,2,1,2,1,24,2,1,
2,2,2,1,2,24,2,1,2,2,2,2,2,41,24,1,2,1,2,144,2,1,2,1,24,
2,1,2,2,2,2,2,2,2,1,15,2,1,2,12,2,1,2,41,12,2,1,2,1,288,
1,2,1,2,12,41,2,1,2,24,2,1,2,2,2,1,2,12,2,1,2,31,1,2,1,
24,1,2,1,2,3456,2,1,2,1,24,1,2,1,31,2,1,2,12,2,1,2,2,2,1,
2,12,2,1,2,31,1,2,2,2,2,2,2,2,1,2,24,2,1,2,2,2,1,54,288,
1,2,1,2,12,2,1,2,191,1,2,2,2,2,2,2,2,2,2,31,1,2,2,2,2,
2,2,2,1,2,24,2,1,2,2,2,1,2,24,1,2,1,19,2,1,2,12,2,1,2,
15,1,2,2,2,2,2,2,2,1,54,144,2,1,2,1,24,1,2,1,383,2,2,2,2,
2,2,2,2,2,1,15,2,1,54,24,1,2,1,2,288,2,1,2,1,24,2,1,2,2,
2,2,2,2,2,1,15,2,1,2,12,2,1,2,41,12,2,1,2,1,288,1,2,1,2,
12,2,1,2,4607,1,2,2,2,2,2,2,2,2,2,31,1,2,1,24,1,2,1,40,1,
2,2,2,2,2,2,2,1,15,2,1,2,12,2,1,2,2,2,1,2,12,2,1,2,15,
1,2,2,2,2,2,2,2,1,40,1,2,1,24,2,1,2,2,2,1,2,24,2,1,2,
2,2,2,2,2,2,1,31,2,1,2,12,2,1,2,2,2,1,2,12,72,3456,1,2,1,
2,12,2,1,2,15,1,2,2,2,2,2,2,2,1,254,12,2,1,2,2,2,1,2,24,
2,1,2,2,2,1,2,24,2,1,2,41,12,2,1,2,2,2,1,2,24,2,1,2,2,
2,1,2,12,2,1,2,31,1,2,2,2,2,2,2,2,1,2,24,1,2,1,2,288,1,
2,1,2,12,25,2,1,2,12,2,1,2,15,1,2,2,2,2,2,2,2,1,19,2,2,
2,2,2,1,2,24,2,1,2,2,2,1,2,24,1,2,1,71,2,1,191,2,1,2,12,
2,1,2,1,288,1,2,1,2,12,510,1,2,2,2,1,2,24,2,1,2,2,2,1,2,
24,2,1,2,2,2,2,2,19,1,2,2,2,2,2,71,1,2,31,1,2,1,24,1,2,
1,2,3456,2,1,2,1,24,1,2,1,31,2,1,2,12,2,1,2,2,2,1,2,24,2,
1,2,2,2,1,2,12,20,24,1,2,1,2,144,2,1,2,1,24,54,1,2,15,1,2,
2,2,2,2,2,2,2,2,383,1,2,1,24,1,2,1,2,144,2,1,2,1,24,6142,1,
2,1,24,2,1,2,2,2,1,2,24,2,1,2,2,2,1,2,24,41,2,2,2,2,2,
2,2,31,1,2,1,24,1,2,1,52,1,2,1,24,2,1,2,2,2,1,2,24,2,1,
2,2,2,2,2,19,1,2,2,2,2,2,2,2,1,15,2,1,2,12,2,1,2,2,2,
1,2,12,2,1,2,15,1,2,2,2,2,2,2,2,1,19,2,2,2,2,2,1,2,24,
2,1,2,2,2,1,2,24,1,2,1,52,1,2,1,24,1,2,1,31,2,1,2,12,2,
1,2,2,2,1,2,12,2,1,2,31,1,2,2,2,2,2,2,2,1,2,24,2,1,2,
2,2,1,2,24,1,2,1,40,1,2,2,2,2,2,2,2,1,15,2,1,2,12,2,1,
2,2,2,1,2,12,2,1,2,15,1,2,95,1,2,4607,1,2,1,24,1,2,1,2,144,
2,1,2,1,24,20,12,2,1,2,2,2,1,2,24,2,1,2,2,2,1,2,12,338,1,
2,15,1,2,2,2,2,2,2,2,1,2,24,1,2,1,2,288,2,1,2,1,24,2,1,
2,2,2,2,2,2,2,1,31,2,1,2,12,2,1,2,54,2,1,15,2,1,2,12,2,
1,2,2,2,1,2,12,2,1,2,31,1,2,2,2,2,2,2,2,1,2,24,1,2, ...].
...
GENERATING METHOD.
Start with CF = [1] and repeat (PARI code):
t = (1/3)*contfracpnqn(4*CF)[1,1]/contfracpnqn(4*CF)[2,1]; CF = contfrac(t)
This method can be illustrated as follows.
t0 = [1] = 1;
t1 = (1/3)*[4] = [1; 3] = 4/3;
t2 = (1/3)*[4; 12] = [1; 2, 1, 3, 3] = 49/36;
t3 = (1/3)*[4; 8, 4, 12, 12] = [1; 2, 1, 2, 12, 4, 36] = 20116/14643;
t4 = (1/3)*[4; 8, 4, 8, 48, 16, 144] = [1; 2, 1, 2, 12, 2, 1, 2, 15, 1, 2, 5, 432] = 124502344/90627939;
t5 = (1/3)*[4; 8, 4, 8, 48, 8, 4, 8, 60, 4, 8, 20, 1728] = [1; 2, 1, 2, 12, 2, 1, 2, 15, 1, 2, 2, 2, 2, 2, 2, 2, 1, 19, 2, 2, 2, 2, 2, 1, 6, 5184] = 1018841077754176/741636374635107; ...
where this constant t equals the limit of the iterations of the above process.
PROG
(PARI) /* Generate over 3400 digits in the decimal expansion */
CF=[1];
{for(i=1, 12, t = (1/3)*contfracpnqn(4*CF)[1, 1]/contfracpnqn(4*CF)[2, 1];
CF = contfrac(t) ); }
for(n=1, 150, print1(floor(10^(n-1)*t)%10, ", "))
CROSSREFS
Sequence in context: A244189 A200481 A016665 * A120124 A151573 A113832
KEYWORD
nonn,cons
AUTHOR
Paul D. Hanna, Oct 23 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 22:18 EDT 2024. Contains 371782 sequences. (Running on oeis4.)