OFFSET
1,1
COMMENTS
Comment from Hugo van der Sanden Aug 14 2021: (Start)
Row d=12 starts 4 9 9 10 10 469 3937 7343 7343 44719 78937 78937 78937 78937 55952333 233761133 597191343199.
Row d=18 starts 4 4 15 15 15 695 695 1727 7711 13951 13951 46159 400847 400847 400847 65737811 13388955301 934046384293.
Row d=24 starts 4 9 9 10 10 793 4819 6415 7271 14069 14069 14069 31589 67344271 616851797 48299373047 48299373047 20302675273219.
Row d=30 starts 4 4 9 25 25 2779 2779 6347 6347 6347 10811 10811 87109 87109 87109 1513723 15009191 15009191 316612697 316612697 1275591688621.
Row d=36 starts 4 10 10 10 15 1333 3161 4997 6865 34885 142171 834863 1327447 35528747 720945097 63389173477 63389173477 16074207679897 41728758250241.
Row d=42 starts 4 4 9 35 35 2701 2987 2987 7729 26995 26995 185795 307553 708385 708385 708385 1090198367 1819546069 20263042201 5672249016001.
Later terms in these rows are always >10^14. (End)
If p is the least prime that does not divide d, then T(d,k) <= p^2 if k >= p^2 (i.e. any a.p. of length >= p^2 with difference d contains a term divisible by p^2, and the only semiprime divisible by p^2 is p^2). Thus every row is eventually 0. - Robert Israel, Aug 11 2024
LINKS
R. J. Mathar, Table for d <= 999 (PDF)
FORMULA
EXAMPLE
Array begins:
d.\...k=1.k=2.k=3.k=4.k=5..k=6..k=7..k=8....k=9..k=10.k=11..k=12.
0..|..4...4...4...4...4....4....4....4......4....4.....4.....4...
1..|..4...9...33..0...0....0....0....0......0....0.....0.....0....
2..|..4...4...91..213.213..1383.3091.8129...0....0.....0.....0.....
3..|..4...6...115.0...0....0....0....0......0....0.....0.....0.....
4..|..4...6...6...111.201..201..481..5989...0....0.....0.....0....
5..|..4...4...4...0...0....0....0....0......0....0.....0.....0.....
6..|..4...4...9...203.1333.1333.1333.2159...8309.18799.60499.60499
7..|..4...14..51..0...0....0....0....0......0....0.....0.....0.....
8..|..4...6...6...69..473..511..511..112697.0....0.....0.....0.....
9..|..4...6...77..0...0....0....0....0......0....0.....0.....0.....
10.|..4...4...15..289.289..289..1631.13501..0....0.....0.....0.....
11.|..4...4...4...0...0....0....0....0......0....0.....0.....0.....
Example for row 3: 115 = 5 * 23 is semiprime, 115+3 = 118 = 2 * 59 is semiprime and 115+3+3 = 121 = 11^2 is semiprime, so T(3,3) = 115.
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Jonathan Vos Post, Nov 04 2006
EXTENSIONS
Corrected and extended by R. J. Mathar, Nov 06 2006
Definition clarified by Robert Israel, Aug 11 2024
STATUS
approved