

A082919


Numbers n such that n, n+2, n+4, n+6, n+8, n+10, n+12 and n+14 are semiprimes.


19



8129, 9983, 99443, 132077, 190937, 237449, 401429, 441677, 452639, 604487, 802199, 858179, 991289, 1471727, 1474607, 1963829, 1999937, 2376893, 2714987, 3111977, 3302039, 3869237, 4622087, 4738907, 6156137, 7813559, 8090759
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Start of a cluster of 8 consecutive odd semiprimes. Semiprimes in arithmetic progression. All terms are odd, see also A056809.
Note that there cannot exist 9 consecutive odd semiprimes. Out of any 9 consecutive odd numbers, one of them will be divisible by 9. The only multiple of 9 which is a semiprime is 9 itself and it is easy to see that's not part of a solution.  Jack Brennen, Jan 04 2006
For the first 500 terms, a(n) is roughly 40000*n^1.6, so the sequence appears to be infinite. Note that (a(n)+4)/3 and (a(n)+10)/3 are twin primes.  Don Reble, Jan 05 2006.
All terms == 11 mod 18.  Zak Seidov, Sep 27 2012
There is at least one even semiprime between n and n+14 for 1812 of the first 10000 terms.  Donovan Johnson, Oct 01 2012
All terms == {29,47,83} mod 90.  Zak Seidov, Sep 13 2014
Among first 10000 terms, from all 80000 numbers a(n)+k, k=0,2,4,6,8,10,12,14, the only square is a(4637)+2=23538003241=153421^2 (153421 is prime, of course).  Zak Seidov, Dec 22 2014


REFERENCES

Author of this sequence is Jack Brennen, who provided the terms up to 991289 in a posting to the seqfan mailing list on April 5, 2003


LINKS

Donovan Johnson and Zak Seidov, Table of n, a(n) for n = 1..10000 (terms a(1001) to a(2000) from Zak Seidov)
Eric Weisstein's World of Mathematics, Semiprime.


EXAMPLE

a(1)=8129 because 8129=11*739, 8131=47*173, 8133=3*2711, 8135=5*1627, 8137=79*103, 8139=3*2713, 8141=7*1163, 8143=17*479 are semiprimes.


MATHEMATICA

PrimeFactorExponentsAdded[n_] := Plus @@ Flatten[Table[ #[[2]], {1}] & /@ FactorInteger[n]]; Select[ Range[3*10^6], PrimeFactorExponentsAdded[ # ] == PrimeFactorExponentsAdded[ # + 2] == PrimeFactorExponentsAdded[ # + 4] == PrimeFactorExponentsAdded[ # + 6] == PrimeFactorExponentsAdded[ # + 8] == PrimeFactorExponentsAdded[ # + 10] == PrimeFactorExponentsAdded[ # + 12] == PrimeFactorExponentsAdded[ # + 14] == 2 &]  Robert G. Wilson v and Zak Seidov, Feb 24 2004


CROSSREFS

Cf. A001358, A082130, A082131, A056809, A070552, A092207, A092125, A092126, A092127, A092128, A092129, A092209, A217222 (consecutive semiprimes).
Sequence in context: A231862 A088846 A092208 * A217222 A252144 A201802
Adjacent sequences: A082916 A082917 A082918 * A082920 A082921 A082922


KEYWORD

nonn


AUTHOR

Hugo Pfoertner, Apr 22 2003


STATUS

approved



