login
A249074
Triangular array read by rows: row n gives the coefficients of the polynomial p(n,x) defined in Comments.
2
1, 4, 1, 6, 4, 1, 32, 14, 4, 1, 60, 72, 24, 4, 1, 384, 228, 120, 36, 4, 1, 840, 1392, 564, 176, 50, 4, 1, 6144, 4488, 3312, 1140, 240, 66, 4, 1, 15120, 31200, 14640, 6480, 2040, 312, 84, 4, 1, 122880, 104880, 97440, 37440, 11280, 3360, 392, 104, 4, 1, 332640
OFFSET
0,2
COMMENTS
The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = x + 2n/f(n-1,x), where f(0,n) = 1. (Sum of numbers in row n) = A249074(n) for n >= 0. (n-th term of column 1) = A087299(n) for n >= 1.
LINKS
Clark Kimberling, Rows 0..100, flattened
EXAMPLE
f(0,x) = 1/1, so that p(0,x) = 1
f(1,x) = (4 + x)/1, so that p(1,x) = 4 + x;
f(2,x) = (6 + 4 x + x^2)/(3 + x), so that p(2,x) = 6 + 4 x + x^2).
First 6 rows of the triangle of coefficients:
1
4 1
6 4 1
32 14 4 1
60 72 24 4 1
384 228 120 36 4 1
MATHEMATICA
z = 11; p[x_, n_] := x + 2 n/p[x, n - 1]; p[x_, 1] = 1;
t = Table[Factor[p[x, n]], {n, 1, z}]
u = Numerator[t]
TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (* A249074 array *)
Flatten[CoefficientList[u, x]] (* A249074 sequence *)
v = u /. x -> 1 (* A249075 *)
u /. x -> 0 (* A087299 *)
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Oct 20 2014
STATUS
approved