This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A249057 Triangular array:  Row n shows the coefficients of polynomials p(n,x) defined in Comments. 5
 1, 4, 1, 5, 4, 1, 24, 11, 4, 1, 35, 52, 18, 4, 1, 192, 123, 84, 26, 4, 1, 315, 660, 285, 120, 35, 4, 1, 1920, 1545, 1500, 545, 160, 45, 4, 1, 3465, 9180, 4680, 2820, 930, 204, 56, 4, 1, 23040, 22005, 27180, 11220, 4740, 1470, 252, 68, 4, 1, 45045, 142380 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = x + (n + 1)/f(n-1,x), where f(x,0) = 1. Row sums give A249059(n) for n >= 1. First column is A249060 (n-th term = n!! for n >= 0). LINKS Clark Kimberling, Table of n, a(n) for n = 0..5049 EXAMPLE f(0,x) = 1/1, so that p(0,x) = 1 f(1,x) = (4 + x)/1, so that p(1,x) = 4 + x; f(2,x) = (5 + 4 x + x^2)/(1 + x), so that p(2,x) = 5 + 4 x + x^2. First 6 rows of the triangle of coefficients: 1 4    1 5    4     1 24   11    4    1 35   52    18   4    1 192  123   84   26   4   1 MATHEMATICA z = 12; f[x_, n_] := x + (n+2)/f[x, n - 1]; f[x_, 0] = 1; t = Table[Factor[f[x, n]], {n, 0, z}]; u = Numerator[t]; TableForm[Rest[Table[CoefficientList[u[[n]], x], {n, 0, z}]]] Flatten[CoefficientList[u, x]] (* A249057 sequence *) CROSSREFS Cf. A249059, A249060. Sequence in context: A030352 A212643 A104571 * A105721 A099310 A021880 Adjacent sequences:  A249054 A249055 A249056 * A249058 A249059 A249060 KEYWORD nonn,tabl,easy AUTHOR Clark Kimberling, Oct 20 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 03:27 EST 2018. Contains 318052 sequences. (Running on oeis4.)