login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249060
Column 1 of the triangular array at A249057.
3
1, 4, 5, 24, 35, 192, 315, 1920, 3465, 23040, 45045, 322560, 675675, 5160960, 11486475, 92897280, 218243025, 1857945600, 4583103525, 40874803200, 105411381075, 980995276800, 2635284526875, 25505877196800, 71152682225625, 714164561510400, 2063427784543125
OFFSET
0,2
LINKS
FORMULA
From Derek Orr, Oct 21 2014: (Start)
a(2*n) = (2*n+3)*(2*n+1)!!/3, for n > 0.
a(2*n+1) = (n+2)!*2^(n+1), for n > 0.
For n > 2, if n is even, a(n)/[(n+1)*(n-1)*(n-3)*...*7*5] = n + 3 and if n is odd, a(n)/[(n+1)*(n-1)*(n-3)*...*6*4] = n + 3. (End)
a(n) = gcd_2((n+3)!,(n+3)!!), where gcd_2(b,c) denotes the second-largest common divisor of non-coprime integers b and c, as defined in A309491. - Lechoslaw Ratajczak, Apr 15 2021
D-finite with recurrence: a(n) - (3+n)*a(n-2) = 0. - Georg Fischer, Nov 25 2022
Sum_{n>=0} 1/a(n) = 3*sqrt(e*Pi/2)*erf(1/sqrt(2)) + 2*sqrt(e) - 6, where erf is the error function. - Amiram Eldar, Dec 10 2022
EXAMPLE
First 3 rows from A249057:
1
4 1
5 4 1,
so that a(0) = 1, a(1) = 4, a(2) = 5.
MATHEMATICA
z = 30; p[x_, n_] := x + (n + 2)/p[x, n - 1]; p[x_, 1] = 1;
t = Table[Factor[p[x, n]], {n, 1, z}];
u = Numerator[t]; v1 = Flatten[CoefficientList[u, x]]; (* A249057 *)
v2 = u /. x -> 1 (* A249059 *)
v3 = u /. x -> 0 (* A249060 *)
PROG
(PARI) f(n) = if (n, x + (n + 3)/f(n-1), 1);
a(n) = polcoef(numerator(f(n)), 0); \\ Michel Marcus, Nov 25 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 20 2014
STATUS
approved