Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Dec 10 2022 10:46:45
%S 1,4,5,24,35,192,315,1920,3465,23040,45045,322560,675675,5160960,
%T 11486475,92897280,218243025,1857945600,4583103525,40874803200,
%U 105411381075,980995276800,2635284526875,25505877196800,71152682225625,714164561510400,2063427784543125
%N Column 1 of the triangular array at A249057.
%H Clark Kimberling, <a href="/A249060/b249060.txt">Table of n, a(n) for n = 0..100</a>
%F From _Derek Orr_, Oct 21 2014: (Start)
%F a(2*n) = (2*n+3)*(2*n+1)!!/3, for n > 0.
%F a(2*n+1) = (n+2)!*2^(n+1), for n > 0.
%F For n > 2, if n is even, a(n)/[(n+1)*(n-1)*(n-3)*...*7*5] = n + 3 and if n is odd, a(n)/[(n+1)*(n-1)*(n-3)*...*6*4] = n + 3. (End)
%F a(n) = gcd_2((n+3)!,(n+3)!!), where gcd_2(b,c) denotes the second-largest common divisor of non-coprime integers b and c, as defined in A309491. - _Lechoslaw Ratajczak_, Apr 15 2021
%F D-finite with recurrence: a(n) - (3+n)*a(n-2) = 0. - _Georg Fischer_, Nov 25 2022
%F Sum_{n>=0} 1/a(n) = 3*sqrt(e*Pi/2)*erf(1/sqrt(2)) + 2*sqrt(e) - 6, where erf is the error function. - _Amiram Eldar_, Dec 10 2022
%e First 3 rows from A249057:
%e 1
%e 4 1
%e 5 4 1,
%e so that a(0) = 1, a(1) = 4, a(2) = 5.
%t z = 30; p[x_, n_] := x + (n + 2)/p[x, n - 1]; p[x_, 1] = 1;
%t t = Table[Factor[p[x, n]], {n, 1, z}];
%t u = Numerator[t]; v1 = Flatten[CoefficientList[u, x]]; (* A249057 *)
%t v2 = u /. x -> 1 (* A249059 *)
%t v3 = u /. x -> 0 (* A249060 *)
%o (PARI) f(n) = if (n, x + (n + 3)/f(n-1), 1);
%o a(n) = polcoef(numerator(f(n)), 0); \\ _Michel Marcus_, Nov 25 2022
%Y Cf. A178647, A249057, A309491.
%K nonn,easy
%O 0,2
%A _Clark Kimberling_, Oct 20 2014