Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Oct 28 2014 00:00:07
%S 1,4,1,6,4,1,32,14,4,1,60,72,24,4,1,384,228,120,36,4,1,840,1392,564,
%T 176,50,4,1,6144,4488,3312,1140,240,66,4,1,15120,31200,14640,6480,
%U 2040,312,84,4,1,122880,104880,97440,37440,11280,3360,392,104,4,1,332640
%N Triangular array read by rows: row n gives the coefficients of the polynomial p(n,x) defined in Comments.
%C The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = x + 2n/f(n-1,x), where f(0,n) = 1. (Sum of numbers in row n) = A249074(n) for n >= 0. (n-th term of column 1) = A087299(n) for n >= 1.
%H Clark Kimberling, <a href="/A249074/b249074.txt">Rows 0..100, flattened</a>
%e f(0,x) = 1/1, so that p(0,x) = 1
%e f(1,x) = (4 + x)/1, so that p(1,x) = 4 + x;
%e f(2,x) = (6 + 4 x + x^2)/(3 + x), so that p(2,x) = 6 + 4 x + x^2).
%e First 6 rows of the triangle of coefficients:
%e 1
%e 4 1
%e 6 4 1
%e 32 14 4 1
%e 60 72 24 4 1
%e 384 228 120 36 4 1
%t z = 11; p[x_, n_] := x + 2 n/p[x, n - 1]; p[x_, 1] = 1;
%t t = Table[Factor[p[x, n]], {n, 1, z}]
%t u = Numerator[t]
%t TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (* A249074 array *)
%t Flatten[CoefficientList[u, x]] (* A249074 sequence *)
%t v = u /. x -> 1 (* A249075 *)
%t u /. x -> 0 (* A087299 *)
%Y Cf. A249057, A249075, A087299.
%K nonn,tabl,easy
%O 0,2
%A _Clark Kimberling_, Oct 20 2014