login
A249073
Ordered union of the sets {h^6, h >=1} and {2*k^6, k >=1}.
5
1, 2, 64, 128, 729, 1458, 4096, 8192, 15625, 31250, 46656, 93312, 117649, 235298, 262144, 524288, 531441, 1000000, 1062882, 1771561, 2000000, 2985984, 3543122, 4826809, 5971968, 7529536, 9653618, 11390625, 15059072, 16777216, 22781250, 24137569, 33554432
OFFSET
1,2
COMMENTS
Let S = {h^6, h >=1} and T = {2*k^6, k >=1}. Then S and T are disjoint. The position of n^6 in the ordered union of S and T is A249123(n), and the position of 2*n^6 is A249124(n).
LINKS
EXAMPLE
{h^6, h >=1} = {1, 64, 729, 4096, 15625, 46656, 117649, ...};
{2*k^6, k >=1} = {2, 128, 1458, 8192, 31250, 93312, ...};
so the union is {1, 2, 64, 128, 729, 1458, 4096, 8192, 15625, ...}.
MATHEMATICA
z = 120; s = Table[h^6, {h, 1, z}]; t = Table[2 k^6, {k, 1, z}]; v = Union[s, t]
Flatten[Table[{n^6, 2n^6}, {n, 20}]]//Union (* Harvey P. Dale, Dec 19 2015 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 21 2014
STATUS
approved