OFFSET
1,1
FORMULA
Let a(n) be the sequence defined recursively by a(1)=1 and a(n) is the first odd number greater than a(n-1) such that 2*a(n)+1 is prime and a(i) + a(n) + 1 is prime for all i<=n-1. Then p(n) is the n-th prime in the lexicographic order a(i) + a(j) + 1, i>=j.
EXAMPLE
a(1)=1, a(2)=3 so 1+1+1=3, 1+3+1=5, 3+3+1=7 so the first three elements are 3, 5, 7.
MAPLE
OP:=[1]: P:=[3]: for w to 1 do for n from 0 to 12^6 do s:=6*n+3; Q:=map(z->s+z+1, [op(OP), s]); if andmap(isprime, Q) then OP:=[op(OP), s]; P:=[op(P), op(Q)]; print(s); print(Q); fi; od od; OP; P;
CROSSREFS
KEYWORD
nonn
AUTHOR
Walter Kehowski, Jun 17 2006, Jun 19 2006, Jun 25 2006
STATUS
approved