login
A119756
Numerator of n/1^n + (n-1)/2^n + (n-2)/3^n + ... + 2/(n-1)^n + 1/n^n.
0
1, 9, 355, 87425, 666094597, 283878143843, 1354313329376085811, 24568316785788956621809, 3695039511560825652073500196447, 20673934657221575836904008710237871
OFFSET
1,2
COMMENTS
a(p-1) is divisible by p^2 for prime p>2. a(p-2) is divisible by p for prime p>3. a(n) = (n+1)*(Zeta[n] - Zeta[n,n+1]) - Zeta[n-1] + Zeta[n-1,n+1].
FORMULA
a(n) = numerator[ Sum[ (n+1-i)/i^n, {i,1,n} ]].
MATHEMATICA
Table[Numerator[Sum[(n+1-i)/i^n, {i, 1, n}]], {n, 1, 13}]
CROSSREFS
Sequence in context: A203745 A012812 A266881 * A222697 A063068 A130558
KEYWORD
frac,nonn
AUTHOR
Alexander Adamchuk, Jun 17 2006
STATUS
approved