login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119756
Numerator of n/1^n + (n-1)/2^n + (n-2)/3^n + ... + 2/(n-1)^n + 1/n^n.
0
1, 9, 355, 87425, 666094597, 283878143843, 1354313329376085811, 24568316785788956621809, 3695039511560825652073500196447, 20673934657221575836904008710237871
OFFSET
1,2
COMMENTS
a(p-1) is divisible by p^2 for prime p>2. a(p-2) is divisible by p for prime p>3. a(n) = (n+1)*(Zeta[n] - Zeta[n,n+1]) - Zeta[n-1] + Zeta[n-1,n+1].
FORMULA
a(n) = numerator[ Sum[ (n+1-i)/i^n, {i,1,n} ]].
MATHEMATICA
Table[Numerator[Sum[(n+1-i)/i^n, {i, 1, n}]], {n, 1, 13}]
CROSSREFS
Sequence in context: A203745 A012812 A266881 * A222697 A063068 A130558
KEYWORD
frac,nonn
AUTHOR
Alexander Adamchuk, Jun 17 2006
STATUS
approved