OFFSET
0,2
COMMENTS
LINKS
Karl V. Keller, Jr., Table of n, a(n) for n = 0..1000
Ron Knott, Fibonacci numbers
Eric Weisstein's World of Mathematics, Golden Ratio
Wikipedia, Golden ratio
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1).
EXAMPLE
n= 0, 29*n+floor(0.0) +0^(1-floor(0.48))= 0 +0 +0 = 0 (n/29=0,0^1=0).
n=14, 29*n+floor(0.48)+0^(1-floor(0.97))= 406 +0 +0 = 406 (0^1=0).
n=15, 29*n+floor(0.52)+0^(1-floor(1.0)) = 435 +0 +1 = 436 (0^0=1).
n=28, 29*n+floor(0.97)+0^(1-floor(1.45))= 812 +0 +1 = 813 (0^0=1).
n=29, 29*n+floor(1.0) +0^(1-floor(0.48))= 841 +1 +0 = 842 (n/29*1,0^1=0).
n=43, 29*n+floor(1.48)+0^(1-floor(0.97))= 1247 +1 +0 = 1248 (0^1=0).
n=44, 29*n+floor(1.52)+0^(1-floor(1.0)) = 1276 +1 +1 = 1278 (0^0=1).
n=58, 29*n+floor(2.0) +0^(1-floor(0.48))= 1682 +2 +0 = 1684 (n/29*2,0^1=0).
n=85, 29*n+floor(2.93)+0^(1-floor(1.41))= 2465 +2 +1 = 2468 (0^0=1).
n=86, 29*n+floor(2.97)+0^(1-floor(1.45))= 2494 +2 +1 = 2497 (0^0=1).
n=87, 29*n+floor(3.0) +0^(1-floor(0.48))= 2523 +3 +0 = 2526 (n/29*3,0^0=0).
PROG
(Python)
for n in range(101):
print(29*n+n//29+0**(1-(14+n%29)//29), end=', ')
(Python)
def A249079(n):
a, b = divmod(n, 29)
return 29*n+a+int(b>=15) # Chai Wah Wu, Jul 27 2022
(PARI) a(n) = 29*n + n\29 + 0^(1 - (14+(n % 29))\29); \\ Michel Marcus, Oct 25 2014
(Magma) [29*n + Floor(n/29) + 0^(1-Floor((14+(n mod 29))/29)) : n in [0..50]]; // Vincenzo Librandi, Nov 05 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Karl V. Keller, Jr., Oct 20 2014
STATUS
approved