login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249081
Number of length n+5 0..4 arrays with every six consecutive terms having two times the sum of some two elements equal to the sum of the remaining four
1
5005, 8805, 15493, 27213, 47645, 83045, 143925, 263405, 480725, 874421, 1584425, 2858305, 5130445, 9561325, 17773565, 32945477, 60874349, 112077225, 205513125, 386804645, 726595221, 1361924833, 2546660077, 4749273385, 8830446345
OFFSET
1,1
COMMENTS
Column 4 of A249085
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) -a(n-4) +a(n-5) +61*a(n-6) -122*a(n-7) -2*a(n-8) +62*a(n-10) -60*a(n-11) -1181*a(n-12) +2361*a(n-13) +120*a(n-14) +a(n-15) -1241*a(n-16) +1120*a(n-17) +8860*a(n-18) -17660*a(n-19) -2240*a(n-20) -60*a(n-21) +9980*a(n-22) -7680*a(n-23) -25184*a(n-24) +49248*a(n-25) +15360*a(n-26) +1120*a(n-27) -32864*a(n-28) +16384*a(n-29) +24064*a(n-30) -40448*a(n-31) -32768*a(n-32) -7680*a(n-33) +40448*a(n-34) -16384*a(n-36) +16384*a(n-37) +16384*a(n-39) -16384*a(n-40)
EXAMPLE
Some solutions for n=6
..1....0....0....0....0....3....0....1....1....2....1....4....0....4....1....3
..0....1....0....2....4....3....0....1....2....3....2....3....3....2....4....3
..2....3....4....1....0....1....4....2....4....0....2....4....2....4....2....3
..1....1....0....0....0....4....1....4....4....3....0....4....3....0....1....4
..2....0....2....0....3....3....1....4....0....4....0....2....1....4....1....4
..3....1....0....3....2....1....0....3....1....0....1....4....3....1....0....1
..1....3....3....0....0....0....0....1....4....2....1....4....0....4....1....3
..0....1....3....2....4....0....3....1....2....3....2....3....0....2....1....0
..2....3....1....4....3....1....1....2....4....3....2....4....2....4....2....0
..1....1....3....3....0....1....4....4....4....0....0....4....3....0....1....4
..2....0....2....0....0....0....1....4....0....4....3....2....1....4....4....4
CROSSREFS
Sequence in context: A018188 A280879 A067226 * A154059 A138637 A140921
KEYWORD
nonn
AUTHOR
R. H. Hardin, Oct 20 2014
STATUS
approved