login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of length n+5 0..4 arrays with every six consecutive terms having two times the sum of some two elements equal to the sum of the remaining four
1

%I #4 Oct 20 2014 18:37:06

%S 5005,8805,15493,27213,47645,83045,143925,263405,480725,874421,

%T 1584425,2858305,5130445,9561325,17773565,32945477,60874349,112077225,

%U 205513125,386804645,726595221,1361924833,2546660077,4749273385,8830446345

%N Number of length n+5 0..4 arrays with every six consecutive terms having two times the sum of some two elements equal to the sum of the remaining four

%C Column 4 of A249085

%H R. H. Hardin, <a href="/A249081/b249081.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 2*a(n-1) -a(n-4) +a(n-5) +61*a(n-6) -122*a(n-7) -2*a(n-8) +62*a(n-10) -60*a(n-11) -1181*a(n-12) +2361*a(n-13) +120*a(n-14) +a(n-15) -1241*a(n-16) +1120*a(n-17) +8860*a(n-18) -17660*a(n-19) -2240*a(n-20) -60*a(n-21) +9980*a(n-22) -7680*a(n-23) -25184*a(n-24) +49248*a(n-25) +15360*a(n-26) +1120*a(n-27) -32864*a(n-28) +16384*a(n-29) +24064*a(n-30) -40448*a(n-31) -32768*a(n-32) -7680*a(n-33) +40448*a(n-34) -16384*a(n-36) +16384*a(n-37) +16384*a(n-39) -16384*a(n-40)

%e Some solutions for n=6

%e ..1....0....0....0....0....3....0....1....1....2....1....4....0....4....1....3

%e ..0....1....0....2....4....3....0....1....2....3....2....3....3....2....4....3

%e ..2....3....4....1....0....1....4....2....4....0....2....4....2....4....2....3

%e ..1....1....0....0....0....4....1....4....4....3....0....4....3....0....1....4

%e ..2....0....2....0....3....3....1....4....0....4....0....2....1....4....1....4

%e ..3....1....0....3....2....1....0....3....1....0....1....4....3....1....0....1

%e ..1....3....3....0....0....0....0....1....4....2....1....4....0....4....1....3

%e ..0....1....3....2....4....0....3....1....2....3....2....3....0....2....1....0

%e ..2....3....1....4....3....1....1....2....4....3....2....4....2....4....2....0

%e ..1....1....3....3....0....1....4....4....4....0....0....4....3....0....1....4

%e ..2....0....2....0....0....0....1....4....0....4....3....2....1....4....4....4

%K nonn

%O 1,1

%A _R. H. Hardin_, Oct 20 2014