login
A280879
Occurrences of decrease of the probability density P(n) of coprime numbers k,m, satisfying 1 <= k <= a(n) and 1 <= m <= a(n), and a(n) congruent to 1 (mod 2) and a(n) not congruent to 3 (mod 6).
3
5005, 6545, 7315, 7735, 8645, 8855, 10465, 11165, 11935, 14245, 25025, 32725, 35035, 36575, 38675, 43225, 44275, 45815, 51205, 52325, 54145, 55055, 55825, 59675, 60515, 61985, 65065, 71225, 71995, 73255, 78155, 80465, 83545, 85085, 95095, 97405, 99715
OFFSET
1,1
COMMENTS
Probability densities satisfying P(a(n)) < P(a(n)-1) and a(n) congruent to 1 (mod 2) and a(n) not congruent to 3 (mod 6).
It appears that most numbers satisfy a(n) congruent to 35 (mod 70), but a(74) congruent to 15 (mod 70) and a(93) congruent to 55 (mod 70).
Subset of A280877.
P(n) = ((2*Sum_{m=1..a(n)} phi(m))-1)/a(n)^2 (Cf. Euler phi function A000010).
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms 1..102 from A.H.M. Smeets)
PROG
(Python)
from fraction import gcd
t = 1
to = 1
i = 1
x = 1
while x > 0:
....x = x + 1
....y = 0
....while y < x:
........y = y + 1
........if gcd(x, y) == 1:
............t = t + 2
....e = t*(x-1)*(x-1) - to*x*x
....if (e < 0 and x%2 == 1 and x%6 != 3):
........print(i, x)
........i = i + 1
....to = t
(PARI) P(n) = (2 *sum(j=1, n, eulerphi(j)) - 1)/n^2;
isok(n) = (n % 2) && ((n % 6) != 3) && (P(n) < P(n-1)); \\ Michel Marcus, Jan 29 2017
(Python)
from sympy import totient
A280879_list, n, t = [], 1, 1
while len(A280879_list) < 1000:
n += 1
h = totient(n)
t2 = t+h
if n % 2 and n % 6 != 3 and 2*(n*(h*n - 2*t2 + 1) + t2) < 1:
A280879_list.append(n)
t = t2 # Chai Wah Wu, Feb 11 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
A.H.M. Smeets, Jan 09 2017
STATUS
approved