login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138637
Products of prime quadruples.
2
5005, 46189, 121330189, 1445140189, 463236778189, 4862973196189, 12359548828189, 18898278256189, 112254342850189, 144149198626189, 1022657400370189, 7924420639216189, 28604961973900189, 59910402098980189
OFFSET
1,1
COMMENTS
Product of numbers n, n+2, n+6 and n+8 when are all prime. Quadruplet analog of A037074. Subset of A014613.
LINKS
FORMULA
a(n) = A007530(n)*A007530(n+2)*A007530(n+6)*A007530(n+8).
MAPLE
isA007530 := proc(n) local q; if isprime(n) and n>=5 then q := nextprime(n) ; if q-n = 2 then q := nextprime(q) ; if q -n = 6 then q := nextprime(q) ; RETURN( q-n = 8 ) ; else RETURN(false) ; fi ; else RETURN(false) ; ; fi ; else RETURN(false) ; ; fi ; end: A007530 := proc(n) option remember ; local a; if n = 1 then 5 ; else a := nextprime(A007530(n-1)) ; while not isA007530(a) do a := nextprime(a) ; od: RETURN(a) ; fi ; end: A138637 := proc(n) local p ; p := A007530(n) ; p*(p+2)*(p+6)*(p+8) ; end: seq(A138637(n), n=1..20) ; # R. J. Mathar, May 18 2008
MATHEMATICA
a = {}; For[n = 1, n < 5000, n++, If[{Prime[n+1]-Prime[n], Prime[n+2]-Prime[n+1], Prime[n+3]-Prime[n+2]} == {2, 4, 2}, AppendTo[a, Prime[n]*Prime[n+1]*Prime[n+2]* Prime[n+3]]]]; a (* Stefan Steinerberger, May 18 2008 *)
Times@@@Select[Partition[Prime[Range[2500]], 4, 1], Differences[#]=={2, 4, 2}&] (* Harvey P. Dale, Sep 10 2018 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, May 14 2008
EXTENSIONS
More terms from Stefan Steinerberger and R. J. Mathar, May 18 2008
STATUS
approved