login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A249078 E.g.f.: exp(1)*P(x) - Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n) and Q(x) = Sum_{n>=1} 1/Product_{k=1..n} (k - x^k). 10

%I #18 Oct 29 2014 22:13:49

%S 1,1,4,17,96,595,4516,37104,351020,3604001,41007240,502039444,

%T 6703536516,95376507135,1459072099824,23677731306350,408821193129564,

%U 7443839953433701,143258713990271960,2893053522512463984,61396438056305204020,1362146168353191078195,31605702195327725326560

%N E.g.f.: exp(1)*P(x) - Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n) and Q(x) = Sum_{n>=1} 1/Product_{k=1..n} (k - x^k).

%C The function P(x) = Product_{n>=1} 1/(1 - x^n/n) equals the e.g.f. of A007841, the number of factorizations of permutations of n letters into cycles in nondecreasing length order.

%H Paul D. Hanna, <a href="/A249078/b249078.txt">Table of n, a(n) for n = 0..100</a>

%e E.g.f.: A(x) = 1 + x + 4*x^2/2! + 17*x^3/3! + 96*x^4/4! + 595*x^5/5! +...

%e such that A(x) = exp(1)*P(x) - Q(x), where

%e P(x) = 1/Product_{n>=1} (1 - x^n/n) = Sum_{n>=0} A007841(n)*x^n/n!, and

%e Q(x) = Sum_{n>=1} 1/Product_{k=1..n} (k - x^k).

%e More explicitly,

%e P(x) = 1/((1-x)*(1-x^2/2)*(1-x^3/3)*(1-x^4/4)*(1-x^5/5)*...);

%e Q(x) = 1/(1-x) + 1/((1-x)*(2-x^2)) + 1/((1-x)*(2-x^2)*(3-x^3)) + 1/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)) + 1/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)*(5-x^5)) +...

%e We can illustrate the initial terms a(n) in the following manner.

%e The coefficients in Q(x) = Sum_{n>=0} q(n)*x^n/n! begin:

%e q(0) = 1.7182818284590452...

%e q(1) = 1.7182818284590452...

%e q(2) = 4.1548454853771357...

%e q(3) = 12.901100113049497...

%e q(4) = 56.223782393706533...

%e q(5) = 285.72331242073065...

%e q(6) = 1801.2869693388211...

%e q(7) = 12727.542479311217...

%e q(8) = 104411.81066734227...

%e q(9) = 947120.40724315491...

%e and the coefficients in P(x) = 1/Product_{n>=1} (1 - x^n/n) begin:

%e A007841 = [1, 1, 3, 11, 56, 324, 2324, 18332, 167544, ...];

%e from which we can generate this sequence like so:

%e a(0) = exp(1)*1 - q(0) = 1;

%e a(1) = exp(1)*1 - q(1) = 1;

%e a(2) = exp(1)*3 - q(2) = 4;

%e a(3) = exp(1)*11 - q(3) = 17;

%e a(4) = exp(1)*56 - q(4) = 96;

%e a(5) = exp(1)*324 - q(5) = 595;

%e a(6) = exp(1)*2324 - q(6) = 4516;

%e a(7) = exp(1)*18332 - q(7) = 37104;

%e a(8) = exp(1)*167544 - q(8) = 351020; ...

%o (PARI) \p100 \\ set precision

%o {P=Vec(serlaplace(prod(k=1,31,1/(1-x^k/k +O(x^31)))));} \\ A007841

%o {Q=Vec(serlaplace(sum(n=1,201,prod(k=1,n,1./(k-x^k +O(x^31))))));}

%o for(n=0,30,print1(round(exp(1)*P[n+1]-Q[n+1]),", "))

%Y Cf. A007841, A249474, A249475, A249476, A249477, A249478, A249480.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Oct 28 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 22:17 EDT 2024. Contains 371964 sequences. (Running on oeis4.)