login
A128317
Triangle read by rows: T = A054523 * A130595, as a lower triangular matrix.
1
1, 0, 1, 3, -2, 1, 0, 4, -3, 1, 5, -4, 6, -4, 1, 0, 5, -9, 10, -5, 1, 7, -6, 15, -20, 15, -6, 1, 0, 12, -24, 36, -35, 21, -7, 1, 9, -12, 30, -56, 70, -56, 28, -8, 1, 0, 9, -30, 80, -125, 126, -84, 36, -9, 1, 11, -10, 45, -120, 210, -252, 210, -120, 45, -10, 1
OFFSET
1,4
FORMULA
Equals A054523 * signed A007318 as infinite lower triangular matrices. A007318 is signed by columns: (+, -, +, ...).
Sum_{k=1..n} T(n, k) = A000010(n) (row sums).
From G. C. Greubel, Jun 24 2024: (Start)
T(n, k) = A054523 * A130595, as a lower triangular matrix.
T(n, k) = Sum_{j=k..n} (-1)^(k+j)*A054523(n,j)*binomial(j-1, k-1).
T(n, k) = Sum_{d|n} (-1)^(d+k)*EulerPhi(n/d)*binomial(d-1, k-1).
T(2*n-1, n) = (-1)^(n-1)*A000984(n-1), n >= 1.
T(2*n-2, n-1) = (-1)^n*A001700(n-2), n >= 2.
Sum_{k=1..n} k*T(n, k) = A126246(n). (End)
EXAMPLE
First few rows of the triangle:
1;
0, 1;
3, -2, 1;
0, 4, -3, 1;
5, -4, 6, -4, 1;
0, 5, -9, 10, -5, 1;
7, -6, 15, -20, 15, -6, 1;
...
MATHEMATICA
A128317[n_, k_]:= DivisorSum[n, (-1)^(#+k)*EulerPhi[n/#]*Binomial[#-1, k-1] &];
Table[A128317[n, k], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Jun 24 2024 *)
PROG
(Magma)
A128317:= func< n, k | (&+[(-1)^(d+k)*EulerPhi(Floor(n/d))*Binomial(d-1, k-1) : d in Divisors(n)]) >;
[A128317(n, k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jun 24 2024
(SageMath)
def A128317(n, k): return sum((-1)^(k+j)*euler_phi(n/j)*binomial(j-1, k-1) for j in (1..n) if (j).divides(n))
flatten([[A128317(n, k) for k in range(1, n+1)] for n in range(1, 16)]) # G. C. Greubel, Jun 24 2024
CROSSREFS
Sums include: A000010 (row sums), A126246.
Sequence in context: A307333 A031251 A194885 * A344348 A179753 A279318
KEYWORD
tabl,sign
AUTHOR
Gary W. Adamson, Feb 25 2007
STATUS
approved