login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The number of functions in a finite set for which the sequence of composition powers ends in a length 3 cycle.
3

%I #26 Dec 18 2020 20:31:13

%S 0,0,0,2,32,480,7880,145320,3009888,69554240,1779185360,49995179520,

%T 1532580072320,50934256044672,1825145974743000,70172455476381440,

%U 2882264153273207360,125985060813367664640,5840066736661562391968,286204501001426735001600

%N The number of functions in a finite set for which the sequence of composition powers ends in a length 3 cycle.

%C See A163951 for the cases ending with length 2 cycles and fixed points.

%H Alois P. Heinz, <a href="/A163952/b163952.txt">Table of n, a(n) for n = 0..387</a>

%F a(n) ~ (2*exp(4/3)-exp(1)) * n^(n-1). - _Vaclav Kotesovec_, Aug 18 2017

%e Any period 3 permutation (or disjoint combinations) is one element to be counted.

%e For n=3, where there are only 2 cases: f1:{1,2,3}->{2,3,1} and f2:{1,2,3}->{3,1,2} but for n>3 there are other elements (non-permutations) to be counted (for instance, with n=5, we count with f:{1,2,3,4,5}->{2,4,5,3,4}).

%p b:= proc(n, m) option remember; `if`(m>3, 0, `if`(n=0, x^m, add(

%p (j-1)!*b(n-j, ilcm(m, j))*binomial(n-1, j-1), j=1..n)))

%p end:

%p a:= n-> coeff(add(b(j, 1)*n^(n-j)*binomial(n-1, j-1), j=0..n), x, 3):

%p seq(a(n), n=0..25); # _Alois P. Heinz_, Aug 14 2017

%t b[n_, m_] := b[n, m] = If[m>3, 0, If[n == 0, x^m, Sum[(j - 1)! b[n - j, LCM[m, j]] Binomial[n - 1, j - 1], {j, 1, n}]]];

%t a[n_] := If[n==0, 0, Coefficient[Sum[b[j, 1] n^(n-j) Binomial[n-1, j-1], {j, 0, n}], x, 3]];

%t a /@ Range[0, 25] (* _Jean-François Alcover_, Dec 18 2020, after _Alois P. Heinz_ *)

%Y Cf. A163951, A163947, A163859.

%Y Column k=3 of A222029.

%K nonn

%O 0,4

%A _Carlos Alves_, Aug 07 2009

%E a(0), a(8)-a(19) from _Alois P. Heinz_, Aug 14 2017