login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230133
Number of permutations of order n with the length of longest run equal 10.
3
2, 40, 698, 11908, 206388, 3690960, 68577600, 1327697280, 26812356480, 564796979240, 12403183337690, 283718956204402, 6753363090218970, 167092903876164794, 4292602805804464576, 114374394103260000000, 3157276569203744863200, 90202107365906127228000
OFFSET
10,1
LINKS
MAPLE
g:= proc(u, o, t) option remember; `if`(u+o=0, 1,
add(g(o+j-1, u-j, 2), j=1..u) +`if`(t<10,
add(g(u+j-1, o-j, t+1), j=1..o), 0))
end:
b:= proc(u, o, t) option remember; `if`(t=10, g(u, o, t),
add(b(o+j-1, u-j, 2), j=1..u)+
add(b(u+j-1, o-j, t+1), j=1..o))
end:
a:= n-> add(b(j-1, n-j, 1), j=1..n):
seq(a(n), n=10..30);
MATHEMATICA
length = 10;
g[u_, o_, t_] := g[u, o, t] = If[u+o == 0, 1, Sum[g[o + j - 1, u - j, 2], {j, 1, u}] + If[t<length, Sum[g[u + j - 1, o - j, t+1], {j, 1, o}], 0]];
b[u_, o_, t_] := b[u, o, t] = If[t == length, g[u, o, t], Sum[b[o + j - 1, u - j, 2], {j, 1, u}] + Sum[b[u + j - 1, o - j, t + 1], {j, 1, o}]];
a[n_] := Sum[b[j - 1, n - j, 1], {j, 1, n}];
Table[a[n], {n, length, 30}] (* Jean-François Alcover, Aug 18 2018, after Alois P. Heinz *)
CROSSREFS
Column l=10 of A211318.
A diagonal of A010026.
Sequence in context: A012807 A127186 A139747 * A279214 A264716 A264713
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 10 2013
STATUS
approved