The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A167588 The second column of the ED4 array A167584. 4
 1, 6, 41, 372, 4077, 53106, 795645, 13536360, 257055705, 5400196830, 124170067665, 3104906420700, 83818724048325, 2431059231544650, 75354930324303525, 2486926158748693200, 87036225272850632625, 3220532233879435917750, 125594424461427237941625 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS G. C. Greubel, Table of n, a(n) for n = 1..150 FORMULA a(n) = (1/2)*(-1)^(n)*(2*n-3)!!*(n+(4*n^2-1)*Sum_{k=0..n-1} ((-1)^(k+n)/(2*k+1))). From Peter Bala, Nov 01 2016: (Start) a(n) = (2*n + 1)!! * Sum_{k = 0..n-1} (-1)^(k-1)/((2*k - 1)*(2*k + 1)*(2*k + 3)). a(n) ~ Pi * 2^(n-3/2) * ((n+1)/e)^(n+1). E.g.f.: (4*x*sqrt(1 - 4*x^2) + 2*arcsin(2*x))/(8*(1 - 2*x)^(3/2)). a(n) = 6*a(n-1) + (2*n - 5)*(2*n - 1)*a(n-2) with a(0) = 0, a(1) = 1. The sequence b(n) := (2*n + 1)!! = (2*n + 2)!/((n + 1)!*2^(n+1)) satisfies the same recurrence with b(0) = 1 and b(1) = 3. This leads to the continued fraction representation a(n) = b(n)*[ 1/(3 - 3/(6 + 5/(6 + 21/(6 + ... + (2*n - 5)*(2*n - 1)/(6))))) ] for n >= 2. As n -> infinity, a(n)/(A001147(n+1)) -> 1/2!*Pi/4 = 1/(3 - 3/(6 + 5/(6 + 21/(6 + ... + (2*n - 5)*(2*n - 1)/(6 + ...))))). Compare with the generalized continued fraction representation Pi = 3 + 1^2/(6 + 3^2/(6 + 5^2/(6 + ...))). See A142970. (End) MATHEMATICA Table[(1/2)*(-1)^(n)*(2*n - 3)!!*((n) + (4*n^2 - 1)*Sum[(-1)^(k + n)/(2*k + 1), {k, 0, n - 1}]), {n, 1, 50}] (* G. C. Greubel, Jun 17 2016 *) CROSSREFS Equals the second column of the ED4 array A167584. Other columns are A024199 and A167589. Cf. A007509 and A025547 (the sum((-1)^(k+n)/(2*k+1), k=0..n-1) factor), A001147, A142970. Sequence in context: A094869 A178824 A006198 * A323573 A230134 A007130 Adjacent sequences:  A167585 A167586 A167587 * A167589 A167590 A167591 KEYWORD easy,nonn AUTHOR Johannes W. Meijer, Nov 10 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 25 07:47 EST 2020. Contains 331241 sequences. (Running on oeis4.)