login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A025547 Least common multiple of {1,3,5,...,2n-1}. 28
1, 3, 15, 105, 315, 3465, 45045, 45045, 765765, 14549535, 14549535, 334639305, 1673196525, 5019589575, 145568097675, 4512611027925, 4512611027925, 4512611027925, 166966608033225, 166966608033225, 6845630929362225 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This sequence coincides with the sequence f(n) = denominator of 1 + 1/3 + 1/5 + 1/7 + ... + 1/(2n-1) iff n <= 38. But a(39) = 6414924694381721303722858446525, f(39) = 583174972216520118520259858775. - T. D. Noe, Aug 04 2004

Coincides for n=1..42 with the denominators of a series for Pi*sqrt(2)/4 and then starts to differ. See A127676.

a(floor((n+1)/2)) = gcd(a(n), A051426(n)). - Reinhard Zumkeller, Apr 25 2011

A051417(n) = a(n+1)/a(n).

LINKS

T. D. Noe, Table of n, a(n) for n = 1..200

Eric Weisstein's World of Mathematics, Jeep Problem, Pi, Pi Continued Fraction, Least Common Multiple

Wikipedia, Least common multiple

Index entries for sequences related to lcm's

MAPLE

A025547:=proc(n) local i, t1; t1:=1; for i from 1 to n do t1:=lcm(t1, 2*i-1); od: t1; end;

f := n->denom(add(1/(2*k-1), k=0..n)); # a different sequence!

MATHEMATICA

a = 1; Join[{1}, Table[a = LCM[a, n], {n, 3, 125, 2}]] (* Zak Seidov, Jan 18 2011 *)

nn=30; With[{c=Range[1, 2*nn, 2]}, Table[LCM@@Take[c, n], {n, nn}]] (* Harvey P. Dale, Jan 27 2013 *)

PROG

(Haskell)

a025547 n = a025547_list !! (n-1)

a025547_list = scanl1 lcm a005408_list

-- Reinhard Zumkeller, Oct 25 2013, Apr 25 2011

(PARI) a(n)=lcm(vector(n, k, 2*k-1)) \\ Charles R Greathouse IV, Nov 20 2012

CROSSREFS

Cf. A007509, A025550, A075135. The numerators are in A074599.

Cf. A003418 (LCM of {1..n}).

Cf. A005408.

Sequence in context: A293996 A229726 A145624 * A220747 A088989 A001801

Adjacent sequences:  A025544 A025545 A025546 * A025548 A025549 A025550

KEYWORD

easy,nice,nonn

AUTHOR

Clark Kimberling

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 14 08:54 EDT 2019. Contains 327995 sequences. (Running on oeis4.)