login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145624
Denominator of the polynomial A_l(x) = Sum_{d=1..l-1} x^(l-d)/d for index l=2n+1 evaluated at x=8.
2
1, 3, 15, 105, 315, 3465, 45045, 18018, 153153, 14549535, 14549535, 334639305, 1673196525, 5019589575, 145568097675, 18050444111700, 265447707525, 265447707525, 9821565178425, 9821565178425, 57526310330775
OFFSET
1,2
COMMENTS
For numerators see A145623. For general properties of A_l(x) see A145609.
LINKS
FORMULA
Sum_{n >= 1} (A145623(n)/a(n))*x^n = (32*sqrt(x)*log((1+sqrt(x))/(1-sqrt(x))) - 4*log(1-x))/(1-64*x). - Robert Israel, Mar 09 2016
MAPLE
G:= (32*sqrt(x)*ln((1-sqrt(x))/(1+sqrt(x))) + 4*ln(1-x))/(64*x-1):
S:=series(G, x, 101):
seq(denom(coeff(S, x, n)), n=1..100); # Robert Israel, Mar 09 2016
MATHEMATICA
m = 8; aa = {}; Do[k = 0; Do[k = k + m^(2 r + 1 - d)/d, {d, 1, 2 r}]; AppendTo[aa, Denominator[k]], {r, 1, 30}]; aa (* Artur Jasinski, Oct 14 2008 *)
CROSSREFS
Sequence in context: A354299 A293996 A229726 * A025547 A352395 A350670
KEYWORD
frac,nonn
AUTHOR
Artur Jasinski, Oct 14 2008
EXTENSIONS
Edited by R. J. Mathar, Aug 21 2009
STATUS
approved