The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A145609 Numerator of the polynomial A_l(x) = sum_{d=1..l-1} x^(l-d)/d for index l=2n+1 evaluated at x=1. 41
 3, 25, 49, 761, 7381, 86021, 1171733, 2436559, 14274301, 55835135, 19093197, 1347822955, 34395742267, 315404588903, 9304682830147, 586061125622639, 54062195834749, 54801925434709, 2053580969474233, 2078178381193813 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The polynomials A_{2n+1}(x) = sum_{d=1..2n} x^(2n+1-d)/d for small n look as follows: n=1, index = 3: A_3(x) = x/2 + x^2. n=2, index = 5: A_5(x) = x/4 + x^2/3 + x^3/2 + x^4. n=3, index = 7: A_7(x) = x/6 + x^2/5 + x^3/4 + x^4/3 + x^5/2 + x^6. n=4, index = 9: A_9(x) = x/8 + x^2/7 + x^3/6 + x^4/5 + x^5/4 + x^6/3 + x^7/2 + x^8. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 FORMULA (1/(2*n+1))*2F1(1, 2*n+1; 2*n+2; 1/m) = Sum_{x>=0} m^(-x)/(x+2n+1) = m^(2n)*arctanh((2m-1)/(2m^2-2m+1)) - A_{2n+1}(m) = m^(2n)*log(m/(m-1)) - A_{2n+1}(m). - Artur Jasinski, Oct 14 2008 It appears that A145609(n)/A145610(n) = H(2*n+2), the harmonic number of order 2*n+2. - Groux Roland, Jan 08 2011 Yes, A145609(n)/A145610(n) = H(2*n+2), as A_l(x) = sum_{d=1..l-1} x^(l-d)/d at x=1 is just sum_{d=1..l-1}1/d = H(l-1), the harmonic number of order (l-1). - Zak Seidov, Jan 09 2014 a(n) = numerator of Integral_{x=0..1} ((1 - x^(2*n))/(1 - x). - Peter Luschny, Sep 28 2017 MAPLE A := proc(l, x) add(x^(l-d)/d, d=1..l-1) ; end: A145609 := proc(n) numer( A(2*n+1, 1)) ; end: seq(A145609(n), n=1..20) ; # R. J. Mathar, Aug 21 2009 MATHEMATICA m = 1; aa = {}; Do[k = 0; Do[k = k + m^(2 r + 1 - d)/d, {d, 1, 2 r}]; AppendTo[aa, Numerator[k]], {r, 1, 25}]; aa (* Artur Jasinski *) CROSSREFS For denominators see A145610. Cf. A145611-A145640. Sequence in context: A266702 A264937 A051280 * A259923 A120285 A041897 Adjacent sequences:  A145606 A145607 A145608 * A145610 A145611 A145612 KEYWORD frac,nonn AUTHOR Artur Jasinski, Oct 14 2008 EXTENSIONS Edited, parentheses in front of Gauss. Hypg. Fct. added by R. J. Mathar, Aug 21 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 12:43 EDT 2021. Contains 347617 sequences. (Running on oeis4.)