login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A120285 Numerator of harmonic number H(p-1) = Sum_{k=1..p-1} 1/k for prime p. 2
1, 3, 25, 49, 7381, 86021, 2436559, 14274301, 19093197, 315404588903, 9304682830147, 54801925434709, 2078178381193813, 12309312989335019, 5943339269060627227, 14063600165435720745359, 254381445831833111660789 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Prime(n)^2 divides a(n) for n>2.
LINKS
Eric Weisstein's World of Mathematics, Wolstenholme's Theorem.
FORMULA
a(n) = numerator(Sum_{k=1..prime(n)-1} 1/k).
a(n) = A001008(prime(n)-1).
a(n) = A061002(n)*prime(n)^2 for n > 2.
MAPLE
f3:=proc(n) local p;
p:=ithprime(n);
numer(add(1/i, i=1..p-1));
end proc;
[seq(f3(n), n=1..20)];
MATHEMATICA
Numerator[Table[Sum[1/k, {k, 1, Prime[n]-1}], {n, 1, 20}]]
Table[HarmonicNumber[p], {p, Prime[Range[20]]-1}]//Numerator (* Harvey P. Dale, May 18 2023 *)
PROG
(PARI) a(n) = my(p=prime(n)); numerator(sum(k=1, p-1, 1/k)); \\ Michel Marcus, Dec 25 2018
CROSSREFS
Sequence in context: A051280 A145609 A259923 * A041897 A356594 A242974
KEYWORD
frac,nonn
AUTHOR
Alexander Adamchuk, Jul 07 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 01:44 EST 2023. Contains 367616 sequences. (Running on oeis4.)