login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A127676 Numerators of partial sums of a series for Pi*sqrt(2)/4. 2
1, 4, 17, 104, 347, 4132, 50251, 47248, 848261, 16882724, 16189889, 357817912, 1856017421, 5753962988, 161845337077, 4871637351712, 5008383140437, 5137314884092, 185568039683479, 181286844605704, 7599727236867089 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Denominators coincide with A025547(n+1) for n=0..41, but then start to differ. See the W. Lang link. denominator(r(42))=7422822568422519986207785205976075 but the corresponding entry is A025547(43)=126187983663182839765532348501593275.

REFERENCES

E. Maor, Trigonometric Delights, Princeton University Press, 1998, p. 205.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

R. Ayoub, Euler and the Zeta Function, Am. Math. Monthly 81 (1974) 1067-1086, p. 1070.

W. Lang, Rationals and limit.

FORMULA

a(n) = numerator(r(n)) with the rationals (in lowest terms) r(n) = Sum_{k=0..n} (-1)^floor(k/2)/(2*k+1).

EXAMPLE

Rationals r(n): [1, 4/3, 17/15, 104/105, 347/315, 4132/3465, ...].

MATHEMATICA

Numerator[Table[Sum[(-1)^Floor[k/2]/(2*k + 1), {k, 0, n}], {n, 0, 50}]] (* G. C. Greubel, Aug 17 2018 *)

PROG

(PARI) a(n) = numerator(sum(k=0, n, (-1)^(k\2)/(2*k+1))); \\ Michel Marcus, Oct 03 2017

(Magma) [Numerator((&+[(-1)^Floor(k/2)/(1+2*k): k in [0..n]])): n in [0..50]]; // G. C. Greubel, Aug 17 2018

CROSSREFS

Cf. A025547 (denominators).

Sequence in context: A290352 A091635 A306160 * A335626 A232211 A122940

Adjacent sequences: A127673 A127674 A127675 * A127677 A127678 A127679

KEYWORD

nonn,easy,frac

AUTHOR

Wolfdieter Lang, Mar 07 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 11:05 EST 2022. Contains 358693 sequences. (Running on oeis4.)