login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A230448 T(n, k) = T(n-1, k-1) + T(n-1, k) with T(n, 0) = 1 and T(n, n) = A226205(n+1), n >= 0 and 0 <= k <= n. 2
1, 1, 0, 1, 1, 3, 1, 2, 4, 5, 1, 3, 6, 9, 16, 1, 4, 9, 15, 25, 39, 1, 5, 13, 24, 40, 64, 105, 1, 6, 18, 37, 64, 104, 169, 272, 1, 7, 24, 55, 101, 168, 273, 441, 715, 1, 8, 31, 79, 156, 269, 441, 714, 1156, 1869, 1, 9, 39, 110, 235, 425, 710, 1155, 1870, 3025, 4896 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

Triangle T(n, k) is related to the Kn1p sums of the ‘Races with Ties’ triangle A035317. See A230447 for the Kn1p sums and A180662 for the definitions of these sums.

The row sums equal ((-1)^n*3*A083581(n) + A022379(2*n+2))/15.

Note that the partial fraction expansion of the G.f. of the terms in the n-th row of the square array Tsq(n, k) = T(n+k, k) is related to A014334, the exponential convolution of the Fibonacci numbers with themselves, and to A000032, the Lucas numbers.

LINKS

Table of n, a(n) for n=0..65.

FORMULA

T(n, k) = T(n-1, k-1) + T(n-1, k) with T(n, 0) = 1 and T(n, n) = F(n+2) * F(n-1) = A226205(n+1) with F(n) = A000045(n), the Fibonacci numbers, n >= 0 and 0 <= k <= n.

T(n, k) = sum(A035317(n+k-p-2, p), p=0..k), n >= 0 and 0 <= k <= n.

T(n+p+2, p-2) = A080239(n+2*p-1) - sum(A035317(n-k+p-1, k+p-1), k=0..floor(n/2)), n >= 0 and p >= 2.

The triangle as a square array Tsq(n, k) = T(n+k, k), n >= 0 and k >= 0.

Tsq(n, k) = sum(Tsq(n-1, i), i=0..k), n >= 1 and k >= 0, with Tsq(0, k) = A226205(k+1).

The two G.f.’s given below generate the terms in the n-th row of the square array Tsq(n, k). The remarkable second G.f. is the partial fraction expansion of the first G.f..

G.f.: 1/((1-x)^(n-2)*(1+x)*(x^2-3*x+1)), n >= 0.

G.f.: sum((-1)^(n+k-1)*A014334(k+2)/(2^(k+2)*(x-1)^(n-k-2)), k=0..n-3) + 1/(5*2^(n-2)*(1+x)) + (A000032(n+1) - A000032(n-1)*x)/(5*(x^2-3*x+1)), n >= 0.

EXAMPLE

The first few rows of triangle T(n, k), n >= 0 and 0 <= k <= n.

n/k 0   1   2    3    4     5     6     7

------------------------------------------------

0|  1

1|  1,  0

2|  1,  1,  3

3|  1,  2,  4,   5

4|  1,  3,  6,   9,  16

5|  1,  4,  9,  15,  25,   39

6|  1,  5, 13,  24,  40,   64,  105

7|  1,  6, 18,  37,  64,  104,  169,   272

The triangle as a square array Tsq(n, k) = T(n+k, k), n >= 0 and k >= 0.

n/k 0   1   2    3    4    5      6     7

------------------------------------------------

0|  1,  0,  3,   5,  16,  39,   105,  272

1|  1,  1,  4,   9,  25,  64,   169,  441

2|  1,  2,  6,  15,  40,  104,  273,  714

3|  1,  3,  9,  24,  64,  168,  441, 1155

4|  1,  4, 13,  37, 101,  269,  710, 1865

5|  1,  5, 18,  55, 156,  425, 1135, 3000

6|  1,  6, 24,  79, 235,  660, 1795, 4795

7|  1,  7, 31, 110, 345, 1005, 2800, 7595

MAPLE

T := proc(n, k) option remember: if k=0 then return(1) elif k=n then return(combinat[fibonacci](n+2)*combinat[fibonacci](n-1)) else procname(n-1, k-1) + procname(n-1, k) fi: end: seq(seq(T(n, k), k=0..n), n=0..10); # End first program.

T := proc(n, k): add(A035317(n+k-p-2, p), p=0..k) end: A035317 := proc(n, k): add((-1)^(i+k) * binomial(i+n-k+1, i), i=0..k) end: seq(seq(T(n, k), k=0..n), n=0..10); # End second program.

CROSSREFS

Cf. (Triangle columns) A000012, A001477, A152950, A226205, A007598, A001654, A064831, A080145

Sequence in context: A183312 A108038 A151845 * A201653 A230765 A250306

Adjacent sequences:  A230445 A230446 A230447 * A230449 A230450 A230451

KEYWORD

nonn,easy,tabl

AUTHOR

Johannes W. Meijer, Oct 19 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 17:42 EDT 2021. Contains 347588 sequences. (Running on oeis4.)