login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080145
a(n) = Sum_{m=1..n} Sum_{i=1..m} F(i)*F(i+1) where F(n)=Fibonacci numbers A000045.
3
0, 1, 4, 13, 37, 101, 269, 710, 1865, 4890, 12810, 33546, 87834, 229963, 602062, 1576231, 4126639, 10803695, 28284455, 74049680, 193864595, 507544116, 1328767764, 3478759188, 9107509812, 23843770261, 62423800984, 163427632705
OFFSET
0,3
COMMENTS
This is the 2-fold convolution of A001654 with the sequence 1,1,1,....
Equivalently, partial sums of A064831 which is the partial sums of A001654. - Joerg Arndt, Oct 01 2021
a(n) is the number of permutations p in Sn(321) such that p^(-1) has exactly one left peak. See Troyka and Zhuang. - Michel Marcus, Oct 01 2021
LINKS
FORMULA
a(n) = F(n+1)*F(n+2) - floor((n+2)/2).
G.f.: x/((1 - 2*x - 2*x^2 + x^3)*(1-x)^2).
a(n) = (4*Lucas(2*n + 3) + (-1)^(n+1) - 10*n - 15)/20. - Ehren Metcalfe, Aug 21 2017
a(n) = (4*Fibonacci(n+1)*Fibonacci(n+2) - 2*n - 3 - (-1)^n)/4. - G. C. Greubel, Jul 23 2019
a(n) = Sum_{j=1..n} j*F(n+1-j)*F(n+2-j). - Michael A. Allen, Jan 07 2022
MATHEMATICA
CoefficientList[Series[x/((1-2x-2x^2+x^3)(1-x)^2), {x, 0, 30}], x] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2009 *)
With[{F=Fibonacci}, Table[(4*F[n+1]*F[n+2]-2*n-3-(-1)^n)/4, {n, 0, 30}]] (* G. C. Greubel, Jul 23 2019 *)
PROG
(Magma) [(4*Lucas(2*n+3)+(-1)^(n+1)-10*n-15)/20: n in [0..30]]; // Vincenzo Librandi, Aug 22 2017
(PARI) L(n)=fibonacci(n-1)+fibonacci(n+1)
a(n)=(4*L(2*n+3)-(-1)^n-10*n-15)/20 \\ Charles R Greathouse IV, Aug 26 2017
(Sage) f=fibonacci; [(4*f(n+1)*f(n+2)-2*n-3-(-1)^n)/4 for n in (0..30)] # G. C. Greubel, Jul 23 2019
(GAP) F:=Fibonacci;; List([0..30], n-> (4*F(n+1)*F(n+2)-2*n-3-(-1)^n)/4); # G. C. Greubel, Jul 23 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Jan 31 2003
STATUS
approved