The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054761 Number of positive braids with n crossings of 5 strands. 3
 1, 4, 13, 37, 99, 254, 636, 1567, 3822, 9261, 22346, 53773, 129174, 309958, 743228, 1781330, 4268166, 10224885, 24492034, 58662298, 140498877, 336491169, 805872377, 1929983778, 4622083068, 11069289411, 26509431448, 63486333364 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The (n+1)-strand braid group B_{n+1} has n generators s_1,...,s_n with relations s_i s_k s_i = s_k s_i s_k for k=i+1, s_i s_k = s_k s_i for k>i+1. The elements are the isotopy classes of (n+1) free strands that are planarily "mixed" (s_i corresponds to the operation of crossing the i-th strand under the (i+1)-th strand).. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 F. A. Garside, The braid group and other groups, Quart. Journal Math. Oxford,  Volume 20, Issue 1, 1 January 1969, Pages 235-254. Kyoji Saito, Growth functions associated with Artin monoids of finite type, Proc. Japan Acad. Ser. A Math. Sci., 84 (2008), no. 10, 179-183. [Ignat Soroko, Sep 30 2010] Index entries for linear recurrences with constant coefficients, signature (4, -3, -3, 2, 0, 2, 0, 0, 0, -1). FORMULA G.f.: 1/(1-4*x+3*x^2+3*x^3-2*x^4-2*x^6+x^10). - Ignat Soroko, Sep 30 2010 MATHEMATICA CoefficientList[Series[1/(1-4x+3x^2+3x^3-2x^4-2x^6+x^10), {x, 0, 30}], x] (* or *) LinearRecurrence[{4, -3, -3, 2, 0, 2, 0, 0, 0, -1}, {1, 4, 13, 37, 99, 254, 636, 1567, 3822, 9261}, 30] (* Harvey P. Dale, May 09 2017 *) PROG (PARI) x='x+O('x^30); Vec(1/(1-4*x+3*x^2+3*x^3-2*x^4-2*x^6+x^10)) \\ G. C. Greubel, Jan 17 2018 (MAGMA) I:=[1, 4, 13, 37, 99, 254, 636, 1567, 3822, 9261]; [n le 10 select I[n] else 4*Self(n-1) - 3*Self(n-2) -3*Self(n-3) +2*Self(n-4) +2*Self(n-6) -Self(n-10): n in [1..30]]; CROSSREFS Cf. A000071, A054480. Sequence in context: A324250 A226866 A048474 * A244197 A300985 A080145 Adjacent sequences:  A054758 A054759 A054760 * A054762 A054763 A054764 KEYWORD nonn AUTHOR Serge Burckel (burckel(AT)univ-reunion.fr), Apr 27 2000 EXTENSIONS More terms from Ignat Soroko, Sep 30 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 09:09 EDT 2022. Contains 354112 sequences. (Running on oeis4.)