OFFSET
0,2
COMMENTS
The (n+1)-strand braid group B_{n+1} has n generators s_1,...,s_n with relations s_i s_k s_i = s_k s_i s_k for k=i+1, s_i s_k = s_k s_i for k>i+1. The elements are the isotopy classes of (n+1) free strands that are planarily "mixed" (s_i corresponds to the operation of crossing the i-th strand under the (i+1)-th strand).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
F. A. Garside, The braid group and other groups, Quart. Journal Math. Oxford, Volume 20, Issue 1, 1 January 1969, Pages 235-254.
Kyoji Saito, Growth functions associated with Artin monoids of finite type, Proc. Japan Acad. Ser. A Math. Sci., 84 (2008), no. 10, 179-183. [Ignat Soroko, Sep 30 2010]
Index entries for linear recurrences with constant coefficients, signature (4, -3, -3, 2, 0, 2, 0, 0, 0, -1).
FORMULA
G.f.: 1/(1-4*x+3*x^2+3*x^3-2*x^4-2*x^6+x^10). - Ignat Soroko, Sep 30 2010
a(n) = 4*a(n-1) - 3*a(n-2) - 3*a(n-3) + 2*a(n-4) + 2*a(n-6) - a(n-10). - Wesley Ivan Hurt, May 12 2023
MATHEMATICA
CoefficientList[Series[1/(1-4x+3x^2+3x^3-2x^4-2x^6+x^10), {x, 0, 30}], x] (* or *) LinearRecurrence[{4, -3, -3, 2, 0, 2, 0, 0, 0, -1}, {1, 4, 13, 37, 99, 254, 636, 1567, 3822, 9261}, 30] (* Harvey P. Dale, May 09 2017 *)
PROG
(PARI) x='x+O('x^30); Vec(1/(1-4*x+3*x^2+3*x^3-2*x^4-2*x^6+x^10)) \\ G. C. Greubel, Jan 17 2018
(Magma) I:=[1, 4, 13, 37, 99, 254, 636, 1567, 3822, 9261]; [n le 10 select I[n] else 4*Self(n-1) - 3*Self(n-2) -3*Self(n-3) +2*Self(n-4) +2*Self(n-6) -Self(n-10): n in [1..30]];
CROSSREFS
KEYWORD
nonn
AUTHOR
Serge Burckel (burckel(AT)univ-reunion.fr), Apr 27 2000
EXTENSIONS
More terms from Ignat Soroko, Sep 30 2010
STATUS
approved