login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054761
Number of positive braids with n crossings of 5 strands.
3
1, 4, 13, 37, 99, 254, 636, 1567, 3822, 9261, 22346, 53773, 129174, 309958, 743228, 1781330, 4268166, 10224885, 24492034, 58662298, 140498877, 336491169, 805872377, 1929983778, 4622083068, 11069289411, 26509431448, 63486333364
OFFSET
0,2
COMMENTS
The (n+1)-strand braid group B_{n+1} has n generators s_1,...,s_n with relations s_i s_k s_i = s_k s_i s_k for k=i+1, s_i s_k = s_k s_i for k>i+1. The elements are the isotopy classes of (n+1) free strands that are planarily "mixed" (s_i corresponds to the operation of crossing the i-th strand under the (i+1)-th strand).
LINKS
F. A. Garside, The braid group and other groups, Quart. Journal Math. Oxford, Volume 20, Issue 1, 1 January 1969, Pages 235-254.
Kyoji Saito, Growth functions associated with Artin monoids of finite type, Proc. Japan Acad. Ser. A Math. Sci., 84 (2008), no. 10, 179-183. [Ignat Soroko, Sep 30 2010]
Index entries for linear recurrences with constant coefficients, signature (4, -3, -3, 2, 0, 2, 0, 0, 0, -1).
FORMULA
G.f.: 1/(1-4*x+3*x^2+3*x^3-2*x^4-2*x^6+x^10). - Ignat Soroko, Sep 30 2010
a(n) = 4*a(n-1) - 3*a(n-2) - 3*a(n-3) + 2*a(n-4) + 2*a(n-6) - a(n-10). - Wesley Ivan Hurt, May 12 2023
MATHEMATICA
CoefficientList[Series[1/(1-4x+3x^2+3x^3-2x^4-2x^6+x^10), {x, 0, 30}], x] (* or *) LinearRecurrence[{4, -3, -3, 2, 0, 2, 0, 0, 0, -1}, {1, 4, 13, 37, 99, 254, 636, 1567, 3822, 9261}, 30] (* Harvey P. Dale, May 09 2017 *)
PROG
(PARI) x='x+O('x^30); Vec(1/(1-4*x+3*x^2+3*x^3-2*x^4-2*x^6+x^10)) \\ G. C. Greubel, Jan 17 2018
(Magma) I:=[1, 4, 13, 37, 99, 254, 636, 1567, 3822, 9261]; [n le 10 select I[n] else 4*Self(n-1) - 3*Self(n-2) -3*Self(n-3) +2*Self(n-4) +2*Self(n-6) -Self(n-10): n in [1..30]];
CROSSREFS
Sequence in context: A324250 A226866 A048474 * A244197 A300985 A080145
KEYWORD
nonn
AUTHOR
Serge Burckel (burckel(AT)univ-reunion.fr), Apr 27 2000
EXTENSIONS
More terms from Ignat Soroko, Sep 30 2010
STATUS
approved