The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054760 Table T(n,k) = order of (n,k)-cage (smallest n-regular graph of girth k), n >= 2, k >= 3, read by antidiagonals. 22
 3, 4, 4, 5, 6, 5, 6, 8, 10, 6, 7, 10, 19, 14, 7, 8, 12, 30, 26, 24, 8, 9, 14, 40, 42, 67, 30, 9, 10, 16, 50, 62 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES P. R. Christopher, Degree monotonicity of cages, Graph Theory Notes of New York, 38 (2000), 29-32. LINKS Table of n, a(n) for n=0..31. Andries E. Brouwer, Cages M. Daven and C. A. Rodger, (k,g)-cages are 3-connected, Discr. Math., 199 (1999), 207-215. Geoff Exoo, Regular graphs of given degree and girth G. Exoo and R. Jajcay, Dynamic cage survey, Electr. J. Combin. (2008, 2011). Gordon Royle, Cubic Cages Gordon Royle, Cages of higher valency Pak Ken Wong, Cages-a survey, J. Graph Theory 6 (1982), no. 1, 1-22. FORMULA T(k,g) >= A198300(k,g) with equality if and only if: k = 2 and g >= 3; g = 3 and k >= 2; g = 4 and k >= 2; g = 5 and k = 2, 3, 7 or possibly 57; or g = 6, 8, or 12, and there exists a symmetric generalized g/2-gon of order k - 1. - Jason Kimberley, Jan 01 2013 EXAMPLE First eight antidiagonals are: 3 4 5 6 7 8 9 10 4 6 10 14 24 30 58 5 8 19 26 67 80 6 10 30 42 ? 7 12 40 62 8 14 50 9 16 10 CROSSREFS Moore lower bound: A198300. Orders of cages: this sequence (n,k), A000066 (3,n), A037233 (4,n), A218553 (5,n), A218554 (6,n), A218555 (7,n), A191595 (n,5). Graphs not required to be regular: A006787, A006856. Sequence in context: A316353 A204002 A198300 * A079107 A205837 A262872 Adjacent sequences: A054757 A054758 A054759 * A054761 A054762 A054763 KEYWORD nonn,tabl,nice,hard,more AUTHOR N. J. A. Sloane, Apr 26 2000 EXTENSIONS Edited by Jason Kimberley, Apr 25 2010, Oct 26 2011, Dec 21 2012, Jan 01 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 29 02:45 EDT 2023. Contains 365749 sequences. (Running on oeis4.)